4
Views
3
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Two Alternative Pathways of Transcription Initiation in the Yeast Negative Regulatory Gene GAL80

, &
Pages 6819-6828 | Received 06 Apr 1994, Accepted 11 Jul 1994, Published online: 30 Mar 2023

REFERENCES

  • Arndt, K. T., C. Styles, and G. R. Fink. 1987. Multiple global regulators control HIS4 transcription in yeast. Science 237:874–880.
  • Baht, P. J., and J. E. Hopper. 1992. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GALA protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol. Cell. Biol. 12:2701–2707.
  • Bram, R. J., N. F. Lue, and R. D. Kornberg. 1986. A Gal family of upstream activation sequences in yeast: roles in both induction and repression of transcription. EMBO J. 5:603–608.
  • Brazas, R. M., and D. J. Stillman. 1993. Identification of a protein that binds DNA cooperatively with the yeast SWI5 protein. Mol. Cell. Biol. 13:5524–5537.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Chasman, D. I., and R. D. Kornberg. 1990. GAIA protein: purification, association with GAL80 protein, and conserved domain structure. Mol. Cell. Biol. 10:2916–2923.
  • Chasman, D. L., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and R. D. Kornberg. 1990. A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator. Genes Dev. 4:503–514.
  • Choy, B., and M. R. Green. 1993. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature (London) 366:531–536.
  • Cowell, I. G. 1994. Repression versus activation in the control of gene transcription. Trends Biochem. Sci. 19:38–42.
  • Daignan-Fornier, B., and G. R. Fink. 1992. Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc. Natl. Acad. Sci. USA 89:6746–6750.
  • Fascher, K.-D., J. Schmitz, and W. Horz. 1990. Role of transactivating proteins in the generation of active chromatin at the PH05 promoter in S. cerevisiae. EMBO J. 9:2523–2528.
  • Fedor, M. J., N. F. Lue, and R. D. Kornberg. 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204:109–127.
  • Griggs, D. W., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Griggs, D. W., and M. Johnston. 1993. Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:4999–5009.
  • Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101:181–191.
  • Hahn, S., E. T. Hoar, and L. Guarente. 1985. Each of three “TATA elements” specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82:8562–8566.
  • Hashimoto, Η., Y. Kikuchi, Y. Nogi, and T. Fukasawa. 1983. Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae: isolation and characterization of the regulatory gene GAL4. Mol. Gen. Genet. 191:31–38.
  • Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359.
  • Igarashi, M., T. Segawa, Y. Nogi, Y. Suzuki, and T. Fukasawa. 1987. Autogenous regulation of the Saccharomyces cerevisiae regulatory gene GAL80. Mol. Gen. Genet. 207:273–279.
  • Ito, Η., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnson, P. F., and S. L. McKnight. 1989. Eukaryotic transcriptional regulatory proteins. Annu. Rev. Biochem. 58:799–839.
  • Johnston, M. 1987. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51:458–476.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Johnston, S. A., and J. E. Hopper. 1982. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA 79:6971–6975.
  • Kornberg, R. D., D. Bushnell, A. M. Edwards, W. J. Feaver, P. M. Flanagan, O. Gileadi, N. L. Henry, R. J. Kelleher III, Y. Li, Y. Lorch, N. F. Lue, M. H. Sayre, J. Svejstrup, and H. Tschochner. 1994. Resolution and reconstitution of yeast RNA polymerase II transcription, p. 19–26. In R. C. Conaway, and J. W. Conaway (ed.), Transcription: mechanisms and regulation. Raven Press, New York.
  • Leuther, K. K., and S. A. Johnston. 1992. Nondissociation of GAIA and GAL80 in vivo after galactose induction. Science 256:1333–1335.
  • Lohr, D. 1993. Chromatin structure and regulation of the eukaryotic regulatory gene GAL80. Proc. Natl. Acad. Sci. USA 90:10628–10632.
  • Lue, N. F., D. I. Chasman, A. R. Buchman, and R. D. Kornberg. 1987. Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol. Cell. Biol. 7:3446–3451.
  • Nagawa, F., and G. R. Fink. 1985. The relationship between the “TATA” sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82:8557–8561.
  • Nogi, Y., and T. Fukasawa. 1983. Nucleotide sequence of the transcriptional initiation region of the yeast GAL7 gene. Nucleic Acids Res. 11:8555–8568.
  • Nogi, Y., and T. Fukasawa. 1984. Nucleotide sequence of the yeast regulatory gene GAL80. Nucleic Acids Res. 12:9287–9298.
  • Nogi, Y., and T. Fukasawa. 1989. Functional domains of a negative regulatory protein, GAL80, of Saccharomyces cerevisiae. Mol. Cell. Biol. 9:3009–3017.
  • Ogden, J. E., C. Stanway, S. Kim, J. Mellor, A. J. Kingsman, and S. M. Kingsman. 1986. Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activation sequence but does not require TATA sequences. Mol. Cell. Biol. 6:4335–4343.
  • O'Shea-Greenfield, A., and S. T. Smale. 1992. Roles of TATA and initiator elements in determining the start site location and direction of RNA polymerase II transcription. J. Biol. Chem. 267:1391–1402.
  • Oshima, Y. 1982. Regulatory circuits for gene expression: the metabolism of galactose and phosphate, p. 159–180. In J. R. Broach, E. W. Jones, and J. N. Strathem (ed.), The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Parthun, M. R., and J. A. Jaehning. 1990. Purification and characterization of the yeast transcriptional activator GAL4. J. Biol. Chem. 265:209–213.
  • Pellman, D., M. E. McLaughlin, and G. R. Fink. 1990. TATA-dependent and TATA-independent transcription at the HIS4 gene of yeast. Nature (London) 348:82–85.
  • Ptashne, M., and A. A. F. Gann. 1990. Activators and targets. Nature (London) 346:329–331.
  • Pugh, B. F., and R. Tjian. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5:1935–1945.
  • Pugh, B. F., and R. Tjian. 1992. Diverse transcriptional factors of the multisubunit eukaryotic TFIID complex. J. Biol. Chem. 267:679–682.
  • Roeder, R. G. 1991. The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biochem. Sci. 16:402–408.
  • Roy, A. L., S. Malik, M. Meisterernst, and R. G. Roeder. 1993. An alternative pathway for transcription initiation involving TFII-I. Nature (London) 365:355–359.
  • Roy, A. L., M. Meisterernst, P. Pognonec, and R. G. Roeder. 1991. Cooperative interaction of an initiator-binding transcription factor and the helix-loop-helix activator USF. Nature (London) 354:245–248.
  • Sadowski, I., J. Ma, S. Triezenberg, and M. Ptashne. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature (London) 335:563–564.
  • Sakurai, Η., Y. Hiraoka, and T. Fukasawa. 1993. Yeast GAL11 protein is a distinctive type transcription factor that enhances basal transcription in vitro. Proc. Natl. Acad. Sci. USA 90:8382–8386.
  • Sakurai, H., S. Izumi, and S. Tomino. 1990. In vitro transcription of the plasma protein genes of Bombyx mori. Biochim. Biophys. Acta 1087:18–24.
  • Selleck, S. B., and J. E. Majors. 1987. In vivo DNA-binding properties of a yeast transcription activator protein. Mol. Cell. Biol. 7:3260–3267.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shimada, H., and T. Fukasawa. 1985. Controlled transcription of the yeast regulatory gene GAL80. Gene 39:1–9.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smale, S. T., and D. Baltimore. 1989. The “initiator” as a transcriptional control element. Cell 57:103–113.
  • Struhl, K. 1986. Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms. Mol. Cell. Biol. 6:3847–3853.
  • Struhl, K. 1989. Molecular mechanisms of transcriptional regulation in yeast. Annu. Rev. Biochem. 58:1051–1077.
  • Vogel, K., W. Horz, and A. Hinnen. 1989. The two positively acting regulatory proteins PH02 and PH04 physically interact with PH05 upstream activation regions. Mol. Cell. Biol. 9:2050–2057.
  • Weis, L., and D. Reinberg. 1992. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J. 6:3300–3309.
  • Zawel, L., and D. Reinberg. 1993. Initiation of transcription by RNA polymerase II: a multi-step process. Prog. Nucleic Acid Res. Mol. Biol. 44:67–108.
  • Zhou, Q., P. M. Lieberman, T. G. Boyer, and A. J. Berk. 1992. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6:1964–1974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.