0
Views
18
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Mitogen-Activated Protein Kinase Cascade Is Activated by B-Raf in Response to Nerve Growth Factor through Interaction with p21ras

, , &
Pages 6944-6953 | Received 15 Apr 1994, Accepted 12 Jul 1994, Published online: 30 Mar 2023

REFERENCES

  • Ahn, N., R. Seger, R. Bratlien, C. Diltz, N. Tonks, and E. Krebs. 1991. Multiple components in an epidermal growth factor stimulated protein kinase cascade. J. Biol. Chem. 266:4220–4227.
  • Ahn, N., R. Seger, and E. Krebs. 1992. The mitogen activated protein kinase activator. Curr. Opin. Cell Biol. 4:992–999.
  • Anderson, N., J. Mailer, N. Tonks, and T. Sturgill. 1990. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature (London) 343:651–653.
  • App, H., R. Hazan, A. Zilberstein, A. Ullrich, J. Schlessinger, and U. Rapp. 1991. Epidermal growth factor (EGF) stimulates association and kinase activity of Raf-1 with the EGF receptor. Mol. Cell. Biol. 11:913–919.
  • Barbacid, M., F. Lamballe, D. Pulido, and R. Klein. 1991. The trk family of tyrosine protein kinase receptors. Biochim. Biophys. Acta 1072:115–127.
  • Bar-Sagi, D., and J. R. Feramisco. 1985. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 42:841–848.
  • Blenis, J. 1993. Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. USA 90:5889–5892.
  • Boulton, T., S. Nye, D. Robbins, N. Ip, E. Radziejewska, S. Morgenbesser, R. DePinho, N. Panayotatos, M. Cobb, and G. Yancopoulos. 1991. ERKs: a family of protein serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675.
  • Cowley, S., H. Paterson, P. Kemp, and C. Marshall. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Davis, R. 1993. The mitogen activated protein kinase signal transduction pathway. J. Biol. Chem. 268:14553–14556.
  • Dent, P., W. Haser, T. Haystead, L. Vincent, T. Roberts, and T. Sturgill. 1992. Activation of mitogen-activated protein kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257:1404–1407.
  • DiBattiste, D., M. Golubic, D. Stacey, and A. Wolfman. 1993. Differences in the interaction of p21Ha-ras-GMP-PNP with full length neurofibromin and GTPase-activating protein. Oncogene 8:637–643.
  • Gallego, C., L. Gupta, L. Heasley, N. Qian, and G. Johnson. 1992. Mitogen activated protein kinase activation resulting from selective oncogene expression in NIH 3T3 and rat1a cells. Proc. Natl. Acad. Sci. USA 89:7355–7359.
  • Gotoh, Y., E. Nishida, T. Yamashita, M. Hoshi, M. Kawakami, and H. Sakai. 1990. Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Eur. J. Biochem. 193:661–669.
  • Greene, L., J. Aletta, A. Rukenstein, and S. Green. 1987. PC12 pheochromocytoma cells: culture, NGF treatment and experimental exploitation. Methods Enzymol. 147:207–216.
  • Guerrero, I., A. Pellicer, and D. Burstein. 1986. Activated N-ras gene induces neuronal differentiation of PC12 rat pheochromocytoma cells. J. Cell. Physiol. 129:71–76.
  • Gupta, S., C. Gallego, G. Johnson, and L. Heasley. 1992. MAP kinase is constitutively activated in gip2 and src transformed rat 1a fibroblasts. J. Biol. Chem. 267:7987–7990.
  • Halegoua, S., R. C. Armstrong, and N. E. Kremer. 1991. Dissecting the mode of action of a neuronal growth factor. Curr. Top. Microbiol. Immunol. 165:119–170.
  • Han, M., A. Golden, Y. Han, and P. Sternberg. 1993. C. elegans lin-45 raf gene participates in let 60 ras-stimulated vulval differentiation. Nature (London) 363:133–139.
  • Howe, L., S. Leevers, N. Gomez, S. Nakielny, P. Cohen, and C. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase raf. Cell 71:335–342.
  • Huang, W., A. Alessandrini, C. Crews, and R. Erikson. 1993. Raf-1 forms a stable complex with MEK1 and activates MEK1 by serine phosphorylation. Proc. Natl. Acad. Sci. USA 90:10947–10951.
  • Itoh, T., K. Kaibuchi, T. Masuda, T. Yamamoto, Y. Matsuura, A. Maeda, K. Shimizu, and Y. Takai. 1993. A protein factor for ras p21-dependent activation of mitogen activated protein (MAP) kinase through MAP kinase kinase. Proc. Natl. Acad. Sci. USA 90:975–979.
  • Izumi, T., H. Tamemoto, M. Nagao, T. Kadowaki, F. Takaku, and M. Kasaga. 1991. Insulin and platelet-derived growth factor stimulate phosphorylation of the c-raf product at serine and threonine residues in intact cells. J. Cell Biol. 266:7933–7939.
  • Jaiswal, R., M. Murphy, and G. Landreth. 1993. Identification and characterization of a nerve growth factor-stimulated MAP kinase activator in PC12 cells. J. Biol. Chem. 268:7055–7063.
  • Kaplan, D., B. Hempstead, D. Martin-Zanca, M. Chao, and L. Parada. 1991. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 252:554–558.
  • Kizaka-Kondoh, S., and H. Okayama. 1993. Raf-1 is not a major upstream regulator of MAP kinases in rat fibroblasts. FEBS Lett. 336:255–258.
  • Koide, Η., T. Satoh, M. Nakafuku, and Y. Kaziro. 1993. GTP-dependent association of Raf-1 with Ha-ras: identification of Raf as a target downstream of Ras in mammalian cells. Proc. Natl. Acad. Sci. USA 90:8683–8686.
  • Kolch, W., G. Heidecker, P. Lloyd, and U. Rapp. 1991. Raf-1 protein kinase is required for growth of induced NIH-3T3 cells. Nature (London) 349:426–428.
  • Kosako, Η., Y. Gotoh, S. Matsuda, M. Ishikawa, and E. Nishida. 1992. Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. EMBO J. 11:2903–2908.
  • Kyriakis, J., Η. App, X. Zhang, P. Banerjee, D. Brautigan, U. Rapp, and J. Avruch. 1992. Raf-1 activates MAP kinase kinase. Nature (London) 358:417–421.
  • Kyriakis, J., T. Force, U. Rapp, J. Bonventre, and J. Avruch. 1993. Mitogen regulation of c-raf-1 protein kinase activity toward mitogen-activated protein kinase kinase. J. Biol. Chem. 268:16009–16019.
  • L'Allemain, G., J.-H. Her, J. Wu, T. W. Sturgill, and M. J. Weber. 1992. Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase. Mol. Cell. Biol. 12:2222–2229.
  • Landreth, G., D. Smith, C. McCabe, and C. Gittinger. 1990. Characterization of a nerve growth factor stimulated protein kinase in PC12 cells which phosphorylates MAP2 and pp250. J. Neurochem. 55:514–523.
  • Lange-Carter, C., C. Pleiman, A. Gardner, K. Blumer, and G. Johnson. 1993. A divergence in the MAP kinase regulatory network defined by MEK kinase and raf. Science 260:315–319.
  • Lee, R., M. Cobb, and P. Blackshear. 1992. Evidence that extracellular signal regulated kinases are the insulin activated raf-1 kinase kinases. J. Biol. Chem. 267:1088–1092.
  • Leevers, S., H. Paterson, and C. Marshall. 1994. Requirement for ras in raf activation is overcome by targeting raf to the plasma membrane. Nature (London) 369:411–414.
  • Melnick, M., L. Perkins, M. Lee, L. Ambrosio, and N. Perrimon. 1993. Developmental and molecular characterization of mutations in the Drosophila A-raf serine/threonine protein kinase. Development 118:127–138.
  • Miyasaka, T., M. V. Chao, P. Sherline, and A. R. Saltiel. 1990. Nerve growth factor stimulates a protein kinase in PC12 cells that phosphorylates microtubule-associated protein-2. J. Biol. Chem. 265:4730–4735.
  • Moodie, S., B. Willumsen, M. Weber, and A. Wolfman. 1993. Complexes of ras-GTP with raf-1 and mitogen activated protein kinase kinase. Science 260:1658–1661.
  • Moodie, S. A., M. J. Paris, W. Kolch, and A. Wolfman. Association of MEK1 with p21ras · GMPPNP is dependent on B-Raf. Mol. Cell. Biol., in press.
  • Morrison, D. 1990. The raf-1 kinase as a transducer of mitogenic signals. Cancer Cells 2:377–382.
  • Nakafuka, M., M. Satoh, and Y. Kaziro. 1992. Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin 6, induce accumulation of an active ras.GTP complex in rat pheochromocytoma PC12 cells. J. Biol. Chem. 267:19448–19454.
  • Ohmichi, M., L. Pang, S. Decker, and A. Saltiel. 1992. Nerve growth factor stimulates the activities of the raf-1 and the mitogen-activated protein kinases via the trk protooncogene. J. Biol. Chem. 267:14604–14610.
  • Oshima, M., G. Sithanandam, U. R. Rapp, and G. Guroff. 1991. The phosphorylation and activation of B-raf in PC12 cells stimulated by nerve growth factor. J. Biol. Chem. 266:23753–23760.
  • Posada, J., N. Yew, N. G. Ahn, G. F. Vande Woude, and J. A. Cooper. 1993. Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol. Cell. Biol. 13:2546–2553.
  • Qiu, M., and S. Green. 1991. NGF and EGF rapidly activate p21ras in PC12 cells by distinct, convergent pathways involving tyrosine phosphorylation. Neuron 7:937–946.
  • Rapp, U., G. Heidecker, M. Huleihel, J. Cleveland, W. Choi, T. Pawson, J. Ihle, and W. Anderson. 1988. Raf family serine/ threonine protein kinases in mitogen signal transduction. Cold Spring Harbor Symp. Quant. Biol. 53:173–184.
  • Robbins, D., M. Cheng, E. Zhen, C. Vanderbilt, L. Feig, and M. Cobb. 1992. Evidence for a ras-dependent extracellular signal regulated protein kinase (ERK) cascade. Proc. Natl. Acad. Sci. USA 89:6924–6928.
  • Robbins, D., E. Zhen, H. Owaki, C. Vanderbilt, D. Ebert, T. Geppert, and M. Cobb. 1993. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J. Biol. Chem. 268:5097–5106.
  • Samuels, M. L., M. J. Weber, J. M. Bishop, and M. McMahon. 1993. Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human Raf-1 protein kinase. Mol. Cell. Biol. 13:6241–6252.
  • Schaap, D., J. van der Wal, L. Howe, C. Marshall, and W. Blitterswijk. 1993. A dominant negative mutant of raf blocks mitogen activated protein kinase activation by growth factors and oncogenic p21ras. J. Biol. Chem. 268:20232–20236.
  • Seger, R., N. Ahn, J. Posada, E. Munar, A. Jensen, J. Cooper, M. Cobb, and E. Krebs. 1992. Purification and characterization of mitogen-activated protein kinase activator from EGF-stimulated A431 cells. J. Biol. Chem. 267:14373–14381.
  • Seger, R., D. Deger, F. Lozeman, N. Ahn, L. Graves, J. Campbell, L. Ericsson, M. Harrylock, A. Jenson, and E. Krebs. 1993. Human T-cell mitogen activated protein kinases are related to yeast signal transduction kinases. J. Biol. Chem. 267:25628–25631.
  • Smith, A. P., S. Varon, and E. M. Shooter. 1968. Multiple forms of nerve growth factor protein and its subunits. Biochemistry 7:3259–3268.
  • Stephens, R. M., G. Sithanandam, T. D. Copeland, D. R. Kaplan, U. R. Rapp, and D. K. Morrison. 1992. 95-Kilodalton B-Raf serine/threonine kinase: identification of the protein and its major autophosphorylation site. Mol. Cell. Biol. 12:3733–3742.
  • Stokoe, D., S. Macdonald, K. Cadwallader, M. Symons, and J. Hancock. 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467.
  • Storm, S., J. Cleveland, and U. Rapp. 1990. Expression of the raf family protooncogenes in normal mouse tissues. Oncogene 5:345–351.
  • Szeberenyi, J., H. Cai, and G. M. Cooper. 1990. Effect of a dominant inhibitory Ha-ras mutation on neuronal differentiation of PC12 cells. Mol. Cell. Biol. 10:5324–5332.
  • Thomas, G. 1992. MAP kinase by any other name smells just as sweet. Cell 68:3–6.
  • Thomas, S., M. DeMarco, G. D'Arcangelo, S. Halegoua, and J. Brugge. 1992. Ras is essential for NGF- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68:1031–1040.
  • Traverse, S., P. Cohen, H. Peterson, C. Marshall, U. Rapp, and R. Grand. 1993. Specific association of activated MAP kinase kinase (Raf) with the plasma membrane of ras-transformed retinal cells. Oncogene 8:3175–3181.
  • Troppmair, J., J. Bruder, Η. App, H. Cai, L. Liptak, J. Szeberenyi, G. Cooper, and U. Rapp. 1992. Ras controls coupling of growth factor receptors and protein kinase C in the membrane to Raf-1 and B-raf protein serine kinases in the cytosol. Oncogene 7:1867–1873.
  • Van Aelst, L., M. Barr, S. Marcus, A. Polverino, and M. Wigler. 1993. Complex formation between Ras and Raf and other protein kinases. Proc. Natl. Acad. Sci. USA 90:6213–6217.
  • Vojtek, A., S. Hollenberg, and J. Cooper. 1993. Mammalian ras interacts directly with the serine/threonine kinase, raf. Cell 74:205–214.
  • Warne, P., P. Viciana, and J. Downward. 1993. Direct interaction of ras and the amino-terminal region of raf-1 in vitro. Nature (London) 364:352–355.
  • Wartmann, M., and M. Davis. 1994. The native structure of the activated raf protein kinase is a membrane-bound multi-subunit complex. J. Biol. Chem. 269:6695–6701.
  • Wood, K., and T. Roberts. 1993. Oncogenes and protein kinases in neuronal growth factor action. Biochim. Biophys. Acta 1155:133–150.
  • Wood, K., C. Sarnecki, T. Roberts, and J. Blenis. 1992. ras mediates NGF receptor modulation of three transducing protein kinases: MAP kinase, Raf-1 and RSK. Cell 68:1041–1050.
  • Wood, K., H. Qi, G. D'Arcangelo, R. Armstrong, T. Roberts, and S. Halegoua. 1993. The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc. Natl. Acad. Sci. USA 90:5016–5020.
  • Wu, J., P. Dent, T. Jelinek, A. Wolfman, M. Weber, and T. Sturgill. 1993. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′,5′-monophosphate. Science 262:1065–1068.
  • Wu, J., J. K. Harrison, P. Dent, K. R. Lynch, M. J. Weber, and T. W. Sturgill. 1993. Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol. Cell. Biol. 13:4539–4548.
  • Zhang, X., J. Settleman, J. Kyriakis, E. Takeuchi, S. Elledge, M. Marshall, J. Bruder, U. Rapp, and J. Avruch. 1993. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of cRaf1. Nature (London) 364:308–313.
  • Zheng, C.-F., and K.-L. Guan. 1993. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem. 268:11435–11439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.