11
Views
72
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Binding of Basal Transcription Factor TFIIH to the Acidic Activation Domains of VP16 and p53

, , , , , , , , , & show all
Pages 7013-7024 | Received 14 Apr 1994, Accepted 01 Jul 1994, Published online: 30 Mar 2023

REFERENCES

  • Baniahmad, A., I. Ha, D. Reinberg, S. Tsai, and M.-J. Tsai. 1993. Interaction of human thyroid hormone receptor B with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc. Natl. Acad. Sci. USA 90:8832–8836.
  • Bengal, E., O. Flores, A. Krauskopf, D. Reinberg, and Y. Aloni. 1991. Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. Mol. Cell. Biol. 11:1195–1206.
  • Berger, S. L., B. Piña, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente. 1992. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251–265.
  • Buratowsk, S. 1993. DNA repair and transcription: the helicase connection. Science 260:37–38.
  • Buratowski, S., S. Hahn, L. Guarente, and P. A. Sharp. 1989. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561.
  • Cadena, D. L., and M. E. Dahmus. 1987. Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. J. Biol. Chem. 262:12468–12474.
  • Carey, M. F., Y.-S. Lin, M. R. Green, and M. Ptashne. 1990. A mechanism for synergistic activation of a mammalian gene by GAIA derivatives. Nature (London) 345:361–364.
  • Caron, C., R. Rousset, C. Beraud, V. Moncollin, J.-M. Egly, and P. Jalinot. 1993. Functional and biochemical interaction of the HTLV-1 Taxi transactivator with TBP. EMBO J. 12:4269–4278.
  • Chasman, D. I., J. Leatherwood, M. Carey, M. Ptashne, and R. Kornberg. 1989. Activation of yeast polymerase II transcription by herpesvirus VP16 and GAL4 derivatives in vitro. Mol. Cell. Biol. 9:4746–4749.
  • Chen, X., G. Farmer, H. Zhu, R. Prywes, and C. Prives. 1993. Cooperative binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev. 7:1837–1849.
  • Choy, B., and M. R. Green. 1993. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature (London) 366:531–536.
  • Conaway, J. W., J. N. Bradsher, and R. C. Conaway. 1992. Mechanism of assembly of the RNA polymerase II preinitiation complex. J. Biol. Chem. 267:10142–10148.
  • Conaway, R. C., and J. W. Conaway. 1993. General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62:161–190.
  • Cortes, P., O. Flores, and D. Reinberg. 1992. Factors involved in specific transcription by RNA polymerase II: purification and analysis of transcription factor IIA and identification of transcription factor IIJ. Mol. Cell. Biol. 12:413–421.
  • Coulombe, B., M. Killeen, P. Liljelund, B. Honda, H. Xiao, C. J. Ingles, and J. Greenblatt. 1992. Identification of three mammalian proteins that bind to the yeast TATA box protein TFIID. Gene Express 2:99–110.
  • Cousens, D. J., R. Greaves, C. R. Goding, and P. O'Hare. 1989. The C-terminal 79 amino acids of the herpes simplex virus regulatory protein, Vmw65, efficiently activate transcription in yeast and mammalian cells in chimeric DNA-binding proteins. EMBO J. 8:2337–2342.
  • Cress, W. D., and S. J. Triezenberg. 1991. Critical structural elements of the VP16 transcriptional activation domain. Science 251:87–90.
  • Cullen, B. R. 1990. The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell 63:655–657.
  • Drapkin, R., J. T. Reardon, A. Ansari, J.-C. Huang, L. Zawel, K. Ahn, A. Sancar, and D. Reinberg. 1994. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature (London) 368:769–772.
  • Emili, A., J. Greenblatt, and C. J. Ingles. 1994. Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA-box binding protein. Mol. Cell. Biol. 14:1582–1593.
  • Feaver, W. J., O. Gileadi, Y. Li, and R. D. Kornberg. 1991. CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67:1223–1230.
  • Feaver, W. J., J. Q. Svejstrap, L. Bardwell, J. Bardwell, S. Buratowski, K. D. Gulyas, T. F. Donahue, E. C. Friedberg, and R. D. Kornberg. 1993. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75:1379–1387.
  • Fields, S., and S. K. Jang. 1990. Presence of a potent transcriptional activating sequence in the p53 protein. Science 249:1046–1049.
  • Finkelstein, A., C. F. Kostrab, J. Li, D. P. Chavez, B. Q. Wang, S. M. Fang, J. Greenblatt, and Z. F. Burton. 1992. A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II. Nature (London) 355:464–467.
  • Fischer, L., M. Gerard, C. Chalut, Y. Lutz, S. Humbert, M. Kanno, P. Chambon, and J.-M. Egly. 1992. Cloning of the 62-kilodalton component of basic transcription factor BTF2. Science 257:1392–1395.
  • Flores, Ο., H. Lu, and D. Reinberg. 1992. Factors involved in specific transcription by mammalian RNA polymerase II: identification and characterization of factor IIH. J. Biol. Chem. 267:2786–2793.
  • Gerard, M., L. Fisher, V. Moncolin, J. M. Chipoulet, P. Chambon, and J. M. Egly. 1991. Purification and interaction properties of the human RNA polymerase B (II) general transcription factor BTF2. J. Biol. Chem. 266:20940–20945.
  • Gerster, T., and R. G. Roeder. 1988. A herpesvirus transactivating protein interacts with transcriptional factor OTF-1 and other cellular proteins. Proc. Natl. Acad. Sci. USA 85:6347–6351.
  • Gileadi, O., W. J. Feaver, and R. D. Kornberg. 1992. Cloning of a subunit of yeast RNA polymerase II transcription factor b and CTD kinase. Science 257:1389–1392.
  • Goodrich, J. A., T. Hoey, C. Thut, A. Admon, and R. Tjian. 1993. Drosophila TAFII40 interacts with both a VP16 activation domain and basal transcription factor TFIIB. Cell 75:519–530.
  • Goodrich, J. A., and R. Tjian. 1994. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77:145–156.
  • Greenblatt, J. 1991. Roles of TFIID in transcriptional initiation by RNA polymerase II. Cell 66:1067–1070.
  • Gulyas, K. D., and T. F. Donahue. 1992. SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell 69:1031–1042.
  • Gupta, R., M. Shales, H. Xiao, A. Emili, J. Greenblatt, and C. J. Ingles. Unpublished data.
  • Guzder, S. N., H. Qiu, C. H. Sommers, P. Sung, L. Prakash, and S. Prakash. 1994. DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature (London) 367:91–94.
  • Ha, I., W. Lane, and D. Reinberg. 1991. Cloning of a human gene encoding the general transcription factor IIB. Nature (London) 352:689–695.
  • Hagemeier, C., A. Cook, and T. Kouzarides. 1993. The retinoblastoma protein binds E2F residues required for activation in vivo and TBP binding in vitro. Nucleic Acids Res. 21:4998–5004.
  • Hagemeier, C. A., A. J. Bannister, A. Cook, and T. Kouzarides. 1993. The activation domain of the transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: Rb shows sequence similarity to TFIID and TFIIB. Proc. Natl. Acad. Sci. USA 90:1580–1584.
  • Hateboer, G., Η. T. M. Timmers, A. K. Rustgi, M. Billaud, L. J. van't Veer, and R. Bernards. 1993. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc. Natl. Acad. Sci. USA 90:8489–8493.
  • He, Z., B. T. Brinton, J. Greenblatt, J. Hassell, and C. J. Ingles. 1993. The transactivator proteins VP16 and GAL4 bind replication factor A. Cell 73:1223–1232.
  • Herchlag, D., and F. B. Johnson. 1993. Synergism in transcriptional activation: a kinetic view. Genes Dev. 7:173–179.
  • Hernandez, N. 1993. TBP, a universal eukaryotic transcription factor? Genes Dev. 7:1291–1308.
  • Hickson, A., V. Olson, and S. J. Triezenberg. Unpublished data.
  • Higgins, D. R., S. Prakash, P. Reynolds, R. Polakowska, L. Prakash, and S. Weber. 1983. Isolation and characterization of the RAD3 gene of Saccharomyces cerevisiae and inviability of rad.3 deletion mutants. Proc. Natl. Acad. Sci. USA 80:5680–5684.
  • Hoey, T., B. D. Dynlacht, M. G. Peterson, B. F. Pugh, and R. Tjian. 1990. Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell 61:1179–1186.
  • Hoey, T., R. O. J. Weinzierl, G. Gill, J.-L. Chen, B. D. Dynlacht, and R. Tjian. 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72:247–260.
  • Hope, I. A., and K. Strahl. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894.
  • Horikoshi, N., K. Maguire, A. Kralli, E. Maldonado, D. Reinberg, and R. Weinmann. 1991. Direct interaction between adenovirus E1A protein and the TATA box binding transcription factor TFIID. Proc. Natl. Acad. Sci. USA 88:5124–5128.
  • Ing, N. H., J. M. Beekman, S. Y. Tsai, M.-J. Tsai, and B. W. O'Malley. 1992. Members of the steroid hormone receptor super-family interact with TFIIB (S300-II). J. Biol. Chem. 267:17617–17623.
  • Ingles, C. J., M. Shales, W. D. Cress, S. J. Triezenberg, and J. Greenblatt. 1991. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature (London) 351:588–590.
  • Jiang, Y., S. J. Triezenberg, and J. D. Gralla. 1994. Defective transcriptional activation by diverse VP16 mutants associated with a common inability to form open promoter complexes. J. Biol. Chem. 269:5505–5508.
  • Kao, S.-Y., A. F. Caiman, P. A. Luciw, and B. M. Peterlin. 1987. Anti-termination of transcription within the long terminal repeat of HIV-1 by Tat gene product. Nature (London) 330:489–493.
  • Kashanchi, F., G. Piras, M. F. Radonovich, J. F. Duvall, A. Fattaey, C.-M. Chiang, R. G. Roeder, and J. N. Brady. 1994. Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature (London) 367:295–299.
  • Kato, Η., H. Sumimoto, P. Pognonec, C.-H. Chen, C. A. Rosen, and R. G. Roeder. 1992. HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes Dev. 6:655–666.
  • Kerr, L. D., L. J. Ransone, P. Wamsley, M. Schmitt, T. G. Boyer, Q. Zhou, A. J. Berk, and I. M. Verma. 1993. Association between proto-oncoprotein Rel and TATA-binding protein mediates transcriptional activation by NF-κΒ. Nature (London) 365:412–419.
  • Kim, T. K., S. Hashimoto, R. J. Kelleher III, P. M. Flanagan, R. D. Kornberg, M. Horikoshi, and R. G. Roeder. 1994. Effects of activation-defective TBP mutations on transcription initiation in yeast. Nature (London) 369:252–255.
  • Kim, T. K., and R. G. Roeder. 1994. Proline-rich activator CTF1 targets the TFIIB assembly step during transcriptional activation. Proc. Natl. Acad. Sci. USA 91:4170–4174.
  • Kim, Y.-J., S. Björklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Koleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368:466–469.
  • Kristie, T. M., J. H. LeBowitz, and P. A. Sharp. 1989. The octamer-binding proteins form multiprotein-DNA complexes with HSVa-TIF regulatory protein. EMBO J. 8:4229–4238.
  • Laspia, M. F., A. P. Rice, and M. B. Mathews. 1989. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–292.
  • Lee, W. S., C. C. Kao, G. O. Bryant, X. Liu, and A. J. Berk. 1991. Adenovirus E1A binds TATA-box transcription factor TFIID. Cell 67:365–376.
  • Li, R., and M. R. Botchan. 1993. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 73:1207–1221.
  • Lieberman, P. M., and A. J. Berk. 1991. The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev. 5:2441–2454.
  • Lin, Y.-S., and M. R. Green. 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–981.
  • Lin, Y.-S., E. Maldonado, D. Reinberg, and M. R. Green. 1991. Binding of general transcription factor TFIIB to an acidic activating region. Nature (London) 353:569–571.
  • Liu, X., C. W. Miller, P. H. Koeffler, and A. J. Berk. 1993. The p53 activation domain binds the TATA-box binding polypeptide in holo-TFIID and a neighboring p53 domain inhibits transcription. Mol. Cell. Biol. 13:3291–3300.
  • Lu, H., L. Zawel, L. Fisher, J. M. Egly, and D. Reinberg. 1992. Human general transcription factor TFIIH phosphorylates the C-terminal domain of RNA polymerase II. Nature (London) 358:641–645.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Manet, E., C. Allera, H. Gruffat, I. Mikaelian, A. Rigolet, and A. Sergeant. 1993. The acidic activation domain of the Epstein-Barr virus transcription factor R interacts in vitro with both TBP and TFIIB and is cell-specifically potentiated by a proline-rich region. Gene Express. 3:49–59.
  • Marciniak, R. A., and P. A. Sharp. 1991. HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J. 10:4189–4196.
  • Martin, D. W., R. M. Munoz, M. A. Subler, and S. Deb. 1993. p53 binds to the TATA-binding protein-TATA complexes. J. Biol. Chem. 268:13062–13067.
  • Mitchell, P. J., and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378.
  • O'Rourke, R. W., C. W. Miller, G. J. Kato, K. J. Simon, D.-L. Chen, C. V. Dang, and Η. P. Koeffler. 1990. A potential transcriptional activation element in the p53 protein. Oncogene 5:1829–1832.
  • Park, E., S. N. Guzder, M. Η. M. Koken, I. Jaspers-Dekker, G. Weeda, J. H. J. Hoeijmakers, S. Prakash, and L. Prakash. 1992. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc. Natl. Acad. Sci. USA 89:11416–11420.
  • Parvin, J., and P. A. Sharp. 1993. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–540.
  • Payne, J. M., P. J. Laybourn, and M. E. Dahmus. 1989. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxy-terminal domain of subunit IIa. J. Biol. Chem. 264:19621–19629.
  • Peterson, M. G., J. Inostroza, M. E. Maxon, O. Flores, A. Admon, D. Reinberg, and R. Tjian. 1991. Structure and functional properties of human general transcription factor TFIIE. Nature (London) 354:369–373.
  • Peterson, M. G., N. Tanese, B. F. Pugh, and R. Tjian. 1990. Functional domains and upstream activation properties of cloned human TATA binding protein. Science 248:1625–1630.
  • Ptashne, M. 1988. How eukaryotic transcriptional activators work. Nature (London) 335:683–689.
  • Ptashne, M., and A. A. F. Gann. 1990. Activators and targets. Nature (London) 346:329–331.
  • Pugh, B. F., and R. Tjian. 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61:1187–1197.
  • Qiu, Η., E. Park, L. Prakash, and S. Prakash. 1993. The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. Genes Dev. 7:2161–2171.
  • Ragimov, N., A. Krauskopf, N. Navot, V. Rotter, M. Oren, and Y. Aloni. 1993. Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene 8:1183–1193.
  • Ransone, L. J., L. D. Kerr, M. J. Schmitt, P. Wamsley, and I. M. Verma. 1993. The bZIP domains of Fos and Jun mediate a physical association with the TATA box-binding protein. Gene Express. 3:37–48.
  • Rasmussen, E. B., and J. T. Lis. 1993. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. USA 90:7923–7927.
  • Raycroft, L., H. Wu, and G. Lozano. 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051.
  • Regier, J. L., F. Shen, and S. J. Triezenberg. 1993. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 90:883–887.
  • Reinberg, D., and R. G. Roeder. 1987. Factors involved in specific transcription by mammalian RNA polymerase II: purification and functional analysis of initiation factors IIB and IIE. J. Biol. Chem. 262:3310–3321.
  • Roberts, S. G. E., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1993. Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature (London) 363:741–744.
  • Roeder, R. G. 1991. The complexes of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biochem. Sci. 16:402–408.
  • Sadowski, I., J. Ma, S. Triezenberg, and M. Ptashne. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature (London) 335:563–564.
  • Sawadogo, M., and R. G. Roeder. 1985. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82:4394–4398.
  • Schaeffer, L., V. Moncollin, R. Roy, A. Staub, M. Mezzina, A. Sarasin, G. Weeda, J. H. J. Hoeijmakers, and J.-M. Egly. 1994. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13:2388–2392.
  • Schaeffer, L., R. Roy, S. Humber, V. Moncollin, W. Vermeulen, J. H. J. Hoeijmakers, P. Chambon, and J.-M. Egly. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Serizawa, H., R. C. Conaway, and J. W. Conaway. 1993. Multifunctional RNA polymerase II initiation factor δ from rat liver. J. Biol. Chem. 268:17300–17308.
  • Seto, E., A. Usheva, P. Zambetti, J. Momand, N. Horikoshi, R. Weinmann, and T. Shenk. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 89:12028–12032.
  • Shapiro, D. J., P. A. Sharp, W. W. Wahli, and M. J. Keller. 1988. A high efficiency HeLa cell nuclear transcription extract. DNA 7:47–55.
  • Sopta, M., Z. F. Burton, and J. Greenblatt. 1989. Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II. Nature (London) 341:410–414.
  • Sopta, M., R. W. Carthew, and J. Greenblatt. 1985. Isolation of three proteins that bind to mammalian RNA polymerase II. J. Biol. Chem. 260:10353–10360.
  • Steinmyer, K., and W. Deppert. 1988. DNA binding properties of murine p53. Oncogene 3:501–508.
  • Stern, S., M. Tanaka, and W. Herr. 1989. The oct-1 homeodomain directs formation of a multiprotein DNA complex with the HSV transactivator VP-16. Nature (London) 341:624–630.
  • Stringer, K. F., C. J. Ingles, and J. Greenblatt. 1990. An acidic transcriptional activation domain binds directly and selectively to the TATA-box factor. Nature (London) 345:783–786.
  • Sumimoto, Η., Y. Ohkuma, T. Yamamoto, M. Horikoshi, and R. G. Roeder. 1990. Factors involved in specific transcription by mammalian RNA polymerase II: identification of general transcription factor TFIIG. Proc. Natl. Acad. Sci. USA 87:9158–9162.
  • Sundseth, R., and U. Hansen. 1992. Activation of RNA polymerase II transcription by the specific DNA-binding protein LSF: increased rate of binding of the basal promoter factor TFIIB. J. Biol. Chem. 267:7845–7855.
  • Sung, P., L. Prakash, S. Matson, and S. Prakash. 1987. The RAD3 gene of Saccharomyces cerevisiae is a DNA helicase. Proc. Natl. Acad. Sci. USA 84:8951–8954.
  • Triezenberg, S. J., R. C. Kingsbury, and S. L. McKnight. 1988. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2:718–729.
  • Truant, R., H. Xiao, C. J. Ingles, and J. Greenblatt. 1993. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268:2284–2287.
  • Tyree, C. M., C. P. George, L. M. Lira-DeVito, S. L. Wampler, M. E. Dahmus, L. Zawel, and J. T. Kadonaga. 1993. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 7:1254–1265.
  • Usheva, A., E. Maldonado, A. Goldring, H. Lu, D. Houbavi, D. Reinberg, and Y. Aloni. 1992. Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein. Cell 69:871–881.
  • Walker, S., R. Greaves, and P. O'Hare. 1993. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding. Mol. Cell. Biol. 13:5233–5244.
  • Wang, W., J. D. Gralla, and M. Carey. 1992. The acidic activator GAL4-AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID and TFILA. Genes Dev. 6:1716–1727.
  • Weeda, G., R. C. A. Ham, W. Vermeulen, D. Bootsma, A. J. van der Eb, and J. H. J. Hoeijmakers. 1990. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62:777–791.
  • White, J., C. Brou, J. Wu, Y. Lutz, V. Moncollin, and P. Chambon. 1992. The acidic transcriptional activator GAL-VP16 acts on preformed template-committed complexes. EMBO J. 11:2229–2240.
  • Woontner, M., and J. A. Jaehning. 1989. Accurate initiation by RNA polymerase II in a whole cell extract from Saccharomyces cerevisiae. J. Biol. Chem. 265:8979–8982.
  • Xiao, H., and J. Greenblatt. Unpublished data.
  • Xiao, H., J. T. Lis, H. Xiao, J. Greenblatt, and J. D. Friesen. 1994. The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation. Nucleic Acids Res. 22:1966–1973.
  • Xu, X., C. Prorock, H. Ishikawa, E. Maldonado, Y. Ito, and C. Gelinas. 1993. Functional interaction of the v-Rel and c-Rel oncoproteins with the TATA-binding protein and association with transcription factor IIB. Mol. Cell. Biol. 13:6733–6741.
  • Yankulov, K., J. Blau, T. Purton, S. Roberts, and D. L. Bentley. 1994. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 77:749–759.
  • Yoon, H., S. P. Miller, E. K. Pabich, and T. F. Donahue. 1992. SSL1, a suppressor of a HIS4 5′-UTP stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast. Genes Dev. 6:2463–2477.
  • Zawel, L., and D. Reinberg. 1992. Advances in RNA polymerase II transcription. Curr. Opin. Cell Biol. 4:488–495.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.