1
Views
6
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Expression of the v-crk Oncogene Product in PC12 Cells Results in Rapid Differentiation by both Nerve Growth Factor-and Epidermal Growth Factor-Dependent Pathways

, , , , , & show all
Pages 1964-1971 | Received 02 Jul 1993, Accepted 30 Nov 1993, Published online: 30 Mar 2023

REFERENCES

  • Bar-Sagi, D., and J. R. Feramisco. 1985. Microinjection of the ras oncogene protein into PC 12 cells induces morphological differentiation. Cell 42:841–848.
  • Birge, R. B., J. E. Fajardo, B. J. Mayer, and H. Hanafusa. 1992. Tyrosine-phosphorylated epidermal growth factor receptor and cellular p130 provide high affinity binding substrates to analyze Crk-phophotyrosine-dependent interaction in vitro. J. Biol. Chem. 267:10588–10595.
  • Birge, R. B., J. E. Fajardo, C. Reichman, S. E. Shoelson, Z. Songyang, L. C. Cantley, and H. Hanafusa. 1993. Identification and characterization of a high-affinity interaction between v-Crk and tyrosine-phosphorylated paxillin in CT10-transformed fibroblasts. Mol. Cell. Biol. 13:4648–4656.
  • Burridge, K., C. E. Turner, and L. H. Romer. 1992. Tyrosine phosphorylation of paxillin and ppl25FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell Biol. 119:893–903.
  • Cantley, L. C., K. R. Auger, C. Carpenter, B. Duckworth, A. Graziani, R. Kapeller, and S. Soltoff. 1991. Oncogenes and signal transduction. Cell 64:281–302.
  • Chao, M. V. 1992. Growth factor signaling: where is the specificity? Cell 68:995–997.
  • Dahmer, M. K., L. Ji, and R. L. Perlman. 1989. Characterization of insulin-like growth factor I receptors in PC12 pheochromocytoma cells and bovine adrenal medulla. J. Neurochem. 53:1036–1042.
  • Dahmer, M. K., and R. L. Perlman. 1988. Insulin and insulin-like growth factors stimulate deoxyribonucleuic acid synthesis in PC12 pheochromocytoma cells. Endocrinology 122:2109–2113.
  • DiCicco-Bloom, E., E. Townes-Anderson, and I. B. Black. 1990. Neuroblast mitosis in dissociated culture: regulation and relationship to differentiation. J. Cell Biol. 110:2073–2086.
  • Dreyer, D., A. Lagrange, C. Grothe, and K. Unsicker. 1989. Basic fibroblast growth factor prevents ontogenetic neuron death in vivo. Neurosci. Lett. 99:35–38.
  • Egan, S. E., B. W. Giggings, M. W. Brooks, L. Buday, A. M. Sizeland, and R. A. Weinberg. 1993. Asociation of SOS Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature (London) 363:45–51.
  • Gale, N. W., S. Kaplan, E. J. Lowenstein, J. Schlessinger, and D. Bar-Sagi. 1993. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature (London) 363:88–92.
  • Glassman, R., R. Birge, B. L. Hempstead, and H. Hanafusa. Unpublished data.
  • Greene, L. A., and A. Tischler. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.
  • Hagag, N., S. Halegona, and M. Viola. 1986. Inhibition of growthfactor induced differentiation by microinjection of antibody to ras p21. Nature (London) 319:680–682.
  • Halegoua, S., R. C. Armstrong, and N. E. Kremer. 1991. Dissecting the mode of action of a neuronal growth factor. Curr. Top. Microbiol. Immunol. 165:119–170.
  • Hempstead, B. L., D. Martin-Zanca, D. R. Kaplan, L. F. Parada, and M. V. Chao. 1991. High affinity NGF binding requires co-expression of the trk proto-oncogene and the low affinity NGF receptor. Nature (London) 350:678–683.
  • Hempstead, B. L., S. J. Rabin, L. Kaplan, S. Reid, L. R. Parada, and D. R. Kaplan. 1992. Overexpression of the trk tyrosine kinase rapidly accelerates nerve growth factor-induced differentiation. Neuron 9:883–896.
  • Hempstead, B. L., L. S. Schleifer, and M. V. Chao. 1989. Expression of functional nerve growth factor receptors after gene transfer. Science 243:373–376.
  • Hirokawa, N. 1991. Molecular architecture and dynamics of the neuronal cytoskeleton, p. 5–72. In R. D. Burgoyne (ed.), The neuronal cytoskeleton. Wiley-Liss, New York.
  • Huff, K. R., and G. Guroff. 1979. Nerve growth factor induced reduction in epidermal growth factor responsiveness and epidermal growth factor receptors in PC 12 cells: an aspect of cell differentiation. Biochem. Biophys. Res. Commun. 89:176–180.
  • Johnson, D., A. Lanahan, C. R. Buck, A. Sehgal, C. Morgan, E. Mercer, M. Bothwell, and M. V. Chao. 1986. Expression and structure of the human NGF receptor. Cell 47:545–554.
  • Kaplan, D. R., B. L. Hempstead, D. Martin-Zanca, M. V. Chao, and L. F. Parada. 1991. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 252:554–558.
  • Kaplan, D. R., D. Martin-Zanca, and L. F. Parada. 1991. Tyrosine phosphorylation and tyrosine kinase activity of the trk protooncogene product induced by NGF. Nature (London) 350:158–160.
  • Kim, U.-H., D. Fink, H. S. Kim, D. J. Park, M. L. Contreras, G. Guroff, and S. G. Rhee. 1991. Nerve growth factor stimulates phosphorylation of phospholipase C-γ in PC12 cells. J. Biol. Chem. 266:1359–1362.
  • Klein, R., S. Jing, V. Nanduri, E. O'Rourke, and M. Barbacid. 1991. The trk tyrosine proto-oncogene encodes a receptor for nerve growth factor. Cell 66:395–403.
  • Klein, R., D. Martin-Zanca, M. Barbacid, and L. F. Parada. 1990. Expression of the tyrosine kinase receptor gene trkB is confined to the murine embryonic and adult nervous system. Development 109:845–850.
  • Koch, C. A., D. Anderson, M. F. Moran, C. Ellis, and T. Pawson. 1991. SH2 and SH3 domains. Elements that control interactions of cytoplasmic signal proteins. Science 252:668–674.
  • Kraemer, R., K. Pomerantz, J. Joseph-Silverstein, and D. P. Hajjar. 1993. Induction of basic fibroblast growth factor mRNA and protein synthesis in smooth muscle cells by cholesteryl ester enrichment and 25-hydroxycholesterol. J. Biol. Chem. 268:8040–8045.
  • Kremer, N. E., G. D'Arcangelo, S. M. Thomas, M. DeMarco, J. S. Brugge, and S. Halegoua. 1991. Signal transduction by nerve growth factor and fibroblast growth factor in PC 12 cells requires a sequence of Src and Ras actions. J. Cell Biol. 115:809–819.
  • Levi, A., J. D. Eldridge, and B. M. Paterson. 1985. Molecular cloning of a gene sequence regulated by nerve growth factor. Science 229:393–395.
  • Li, N., A. Batzer, R. Daly, V. Yajnik, E. Skolnik, P. Chardin, D. Bar-Sagi, B. Margolis, and J. Schlessinger. 1993. Guanine-nucleotide-releasing factor hSOS1 binds Grb2 and links receptor tyrosine kinases to Ras signalling. Nature (London) 363:85–88.
  • Mahanthappa, N. K., and G. A. Schwarting. 1993. Peptide growth factor control of olfactory neurogenesis and neuron survival in vitro: roles of EGF and TGF-beta. Neuron 10:293–305.
  • Margolis, B., S. G. Rhee, S. Felder, M. Mervic, R. Lyall, A. Levistski, A. Ullrich, A. Zilberstein, and J. Schlessinger. 1989. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell 57:1101–1107.
  • Martin-Zanca, D., M. Barbacid, and L. F. Parada. 1990. Expression of the trk proto-oncogene is restricted to sensory cranial and spinal ganglia of neuronal crest origin in mouse development. Genes Dev. 4:683–694.
  • Martin-Zanca, D., R. Oskam, G. Mitra, and M. Barbacid. 1989. Molecular and biochemical characterization of the human trk proto-oncogene. Mol. Cell. Biol. 9:24–33.
  • Matsuda, M., S. Tanaka, A. Nagata, T. Kojima, T. Kurata, and M. Shibuya. 1992. Two species of human CRK cDNA encode proteins with distinct biological activity. Mol. Cell. Biol. 12:3482–3489.
  • Mayer, B. J., M. Hamaguchi, and H. Hanafusa. 1988. A novel viral oncogene with structural similarity to phospholipase C. Nature (London) 332:272–275.
  • Mayer, B. J., and H. Hanafusa. 1990. Mutagenic analysis of the v-crk oncogene: requirement for SH2 and SH3 domains and correlation between increased cellular phosphotyrosine and transformation. J. Virol. 64:3581–3589.
  • Park, D., and S. G. Rhee. 1992. Phosphorylation of Nck in response to a variety of receptors, phorbol myristate acetate, and cyclic AMP. Mol. Cell Biol. 12:5816–5823.
  • Qiu, M. S., and S. H. Green. 1991. NGF and EGF rapidly activate p21 Ras in PC12 cells by distinct, convergent pathways involving tyrosine phosphorylation. Neuron 7:937–946.
  • Reichman, C. T. 1992. Ph.D. dissertation. Rockefeller University, New York.
  • Reichman, C. T., B. J. Mayer, S. Keshav, and H. Hanafusa. 1992. The product of the cellular crk gene consists primarily of SH2 and SH3 regions. Cell Growth Differ. 3:451–460.
  • Ringstedt, T., H. Lagercrantz, and H. Persson. 1993. Expression of members of the trk family in the developing postnatal rat brain. Dev. Brain Res. 72:119–131.
  • Rozakis-Adcock, M., R. Fernley, J. Wade, T. Pawson, and D. Bowtell. 1993. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSOS1. Nature (London) 363:83–85.
  • Rozakis-Adcock, M., J. McGlade, G. Mbamalu, G. Pelicci, R. Daly, W. Li, A. Batzer, S. Thomas, J. Brugge, P. G. Pelicci, J. Schlessinger, and T. Pawson. 1992. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature (London) 360:689–692.
  • Rudkin, B. B., P. Lazarovici, B. Z. Levi, Y. Abe, K. Fujita, and G. Guroff. 1989. Cell cycle-specific action of nerve growth factor in PC12 cells: differentiation without proliferation. EMBO J. 8:3319–3325.
  • Salton, S. R., D. J. Fischberg, and K. W. Dong. 1991. Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC 12 cells. Mol. Cell. Biol. 11:2335–2349.
  • Schechter, A. L., and M. A. Bothwell. 1981. Nerve growth factor receptors on PC 12 cells: evidence for two receptor classes with differing cytoskeletal association. Cell 24:867–874.
  • Schlessinger, J., and A. Ullrich. 1992. Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391.
  • Soltoff, S., S. L. Rabin, L. C. Cantley, and D. R. Kaplan. 1992. Nerve growth factor promotes the activation of phosphotidylinositol 3-kinase and its association with the trk tyrosine kinase. J. Biol. Chem. 267:17472–17477.
  • Tanaka, S., S. Hattori, T. Kurata, K. Nagashima, Y. Fukui, S. Nakamura, and M. Matsuda. 1993. Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells. Mol. Cell. Biol. 13:4409–4415.
  • Tessarollo, L., P. Tsoulfas, D. Martin-Zanca, D. Gilbert, N. A. Jenkins, N. G. Copeland, and L. F. Parada. 1993. trkC, a receptor for neurotrophin-3, is widely expressed in the developing nervous system and in non-neuronal tissues. Development 118:463–475.
  • Thomas, S. M., M. Hayes, G. D'Arcangelo, R. Armstrong, B. E. Meyer, A. Zilberstein, J. S. Brugge, and S. Halegoua. 1991. Induction of neurite outgrowth by \-src mimics critical aspects of nerve growth factor-induced differentiation. Mol. Cell. Biol. 11:4739–4750.
  • Togari, A., G. Dickens, H. Kuzuya, and G. Guroff. 1985. The effect of fibroblast growth factor on PC12 cells. J. Neurosci. 5:307–316.
  • Turner, C. E., and J. R. Glenney. 1990. Paxillin: a new vinculin binding protein present in focal adhesions. J. Cell Biol. 111:1059–1068.
  • Vale, R. D., M. J. Ignatius, and E. M. Shooter. 1985. Association of nerve growth factor receptors with the triton X-100 cytoskeleton of PC12 cells. J. Neurosci. 5:2762–2770.
  • Vetter, M. L., D. Martin-Zanca, L. F. Parada, J. M. Bishop, and D. R. Kaplan. 1991. Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-γl by a kinase activity associated with the product of the trk protooncogene. Proc. Natl. Acad. Sci. USA 88:5650–5654.
  • Wood, K. W., C. Sarnecki, T. M. Roberts, and J. Blenis. 1992. Ras mediates nerve growth factor receptor modulation and three signal-transducing protein kinases: MAP kinase, Raf-1 and RSK. Cell 68:1041–1050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.