3
Views
21
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Genes That Can Bypass the CLN Requirement for Saccharomyces cerevisiae Cell Cycle START

&
Pages 2041-2047 | Received 15 Sep 1993, Accepted 23 Nov 1993, Published online: 30 Mar 2023

REFERENCES

  • Aebi, M., G. Kirchner, J.-Y. Chen, U. Vijayraghavan, A. Jacobson, N. C. Martin, and J. N. Abelson. 1991. Isolation of a temperaturesensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 265:16216–16220.
  • Andrews, B. J. Personal communication.
  • Andrews, B. J., and I. Herskowitz. 1989. The yeast SW14 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature (London) 342:830–833.
  • Andrews, B. J., and L. A. Moore. 1992. Interaction of the yeast Swi4 and Swi6 cell cycle regulatory proteins in vitro. Proc. Natl. Acad. Sci. USA 89:11852–11856.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Wiley Interscience, New York.
  • Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking 5′ phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Chang, F., and I. Herskowitz. 1990. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a Gl cyclin, CLN2. Cell 63:999–1011.
  • Cross, F. R. 1988. DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4675–4684.
  • Cross, F. R. 1990. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-1 arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol. 10:6482–6490.
  • Cross, F. R., and A. H. Tinkelenberg. 1991. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875–883.
  • Dirick, L., T. Moll, H. Auer, and K. Nasmyth. 1992. A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast. Nature (London) 357:508–513.
  • Dirick, L., and K. Nasmyth. 1991. Positive feedback in the activation of G1 cyclins in yeast. Nature (London) 351:754–757.
  • Epstein, C. B. 1992. Ph.D. thesis. Rockefeller University, New York, N.Y.
  • Epstein, C. B., and F. R. Cross. 1992. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6:1695–1706.
  • Futcher, B. Personal communication.
  • Ghiara, J. B., H. E. Richardson, K. Sugimoto, M. Henze, D. J. Lew, C. Wittenberg, and S. I. Reed. 1991. A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65:163–174.
  • Goebl, M. Personal communication.
  • Guarente, L., R. R. Yocum, and P. Gifford. 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79:7410–7414.
  • Hadwiger, J. A., and S. I. Reed. 1990. Nucleotide sequence of the Saccharomyces cerevisiae CLN1 and CLN2 genes. Nucleic Acids Res. 18:4025.
  • Hadwiger, J. A., C. Wittenberg, M. D. Mendenhall, and S. I. Reed. 1989. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex. Mol. Cell. Biol. 9:2034–2041.
  • Hadwiger, J. A., C. Wittenberg, H. E. Richardson, M. De Barros Lopes, and S. I. Reed. 1989. A family of cyclin homologs that control the Gl phase in yeast. Proc. Natl. Acad. Sci. USA 86:6255–6259.
  • Hartwell, L. H. 1991. Twenty-five years of cell cycle genetics. Genetics 129:975–980.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Koff, A., F. Cross, A. Fisher, J. Schumacher, K. Leguellec, M. Philippe, and J. M. Roberts. 1991. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66:1217–1228.
  • Lahue, E. E., A. V. Smith, and T. L. Orr-Weaver. 1991. A novel cyclin gene from Drosophila complements CLN function in yeast. Genes Dev. 5:2166–2175.
  • Lee, K. S., L. K. Hines, and D. E. Levin. 1993. A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKCI- mediated pathway. Mol. Cell. Biol. 13:5843–5853.
  • Lee, K. S., K. Irie, Y. Gotoh, Y. Watanabe, H. Araki, E. Nishida, K. Matsumoto, and D. E. Levin. 1993. A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol. Cell. Biol. 13:3067–3075.
  • Levin, D. Personal communication.
  • Léopold, P., and P. H. O'Farrell. 1991. An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell 66:1207–1216.
  • Levin, D. E., and E. Bartlett-Heubusch. 1992. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol. 116:1221–1229.
  • Levin, D. E., F. O. Fields, R. Kunisawa, J. M. Bishop, and J. Thorner. 1990. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62:213–224.
  • Lew, D. J., V. Dulic, and S. I. Reed. 1991. Isolation of three novel human cyclins by rescue of G1 cyclin (On) function in yeast. Cell 66:1197–1206.
  • Lowndes, N. F., A. L. Johnson, L. Breeden, and L. H. Johnston. 1992. SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature (London) 357:505–513.
  • Nasmyth, K. 1993. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 5:166–179.
  • Nasmyth, K. 1993. Regulating the HO endonuclease in yeast. Curr. Opin. Genet. Dev. 3:286–294.
  • Nasmyth, K. Personal communication.
  • Nasmyth, K., and L. Dirick. 1991. The role of SW14 and SW16 in the activity of Gl cyclins in yeast. Cell 66:995–1013.
  • Oehlen, L., and M. Hoek. Personal communication.
  • Ogas, J., B. J. Andrews, and I. Herskowitz. 1991. Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66:1015–1026.
  • Osley, M. A., J. Gould, S. Kim, M. Y. Kane, and L. Hereford. 1986. Identification of sequences in a yeast histone promoter involved in periodic transcription. Cell 45:537–544.
  • Pringle, J. R., and L. H. Hartwell. 1981. The Saccharomyces cerevisiae life cycle, p. 97–142. In J. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Richardson, H., D. J. Lew, M. Henze, K. Sugimoto, and S. I. Reed. 1992. Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev. 6:2021–2034.
  • Richardson, H. E., C. Wittenberg, F. Cross, and S. I. Reed. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133.
  • Schwob, E., and K. Nasmyth. 1993. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7:1160–1175.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1989. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sun, H., D. Treco, N. P. Schultes, and J. W. Szostak. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature (London) 338:87–90.
  • Surana, U., H. Robitsch, C. Price, T. Schuster, I. Fitch, A. B. Futcher, and K. Nasmyth. 1991. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145–161.
  • Thorner, J. Personal communication.
  • Tyers, M., G. Tokiwa, and B. Futcher. 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Clnl, Cln2 and other cyclins. EMBO J. 12:1955–1968.
  • Valdivieso, M. H., K. Sugimoto, K.-Y. Jahng, P. M. B. Fernandes, and C. Wittenberg. 1993. FAR1 is required for posttranscriptional regulation of CLN2 gene expression in response to mating pheromone. Mol. Cell. Biol. 13:1013–1022.
  • Wittenberg, C., K. Sugimoto, and S. I. Reed. 1990. G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62:225–237.
  • Xiong, Y., T. Connolly, B. Futcher, and D. Beach. 1991. Human D-type cyclin. Cell 65:691–699.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.