25
Views
24
CrossRef citations to date
0
Altmetric
Gene Expression

The Half-Life of c-myc mRNA in Growing and Serum-Stimulated Cells: Influence of the Coding and 3′ Untranslated Regions and Role of Ribosome Translocation

&
Pages 2119-2128 | Received 01 Oct 1993, Accepted 02 Dec 1993, Published online: 30 Mar 2023

REFERENCES

  • Aghib, D. F., J. M. Bishop, S. Ottolenghi, A. Guerrasio, A. Serra, and G. Saglio. 1990. A 3′ truncation of MYC caused by chromosomal translocation in a human T-cell leukemia increases mRNA stability. Oncogene 5:707–711.
  • Baglioni, C., A. de Benedetti, and G. J. Williams. 1984. Cleavage of nascent reovirus mRNA by localized activation of the 2′,5′- oligoadenylate-dependent endoribonuclease. J. Virol. 52:865–871.
  • Bernstein, P. L., D. J. Herrick, R. D. Prokipcak, and J. Ross. 1992. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. 6:642–654.
  • Bonnieu, A., P. Roux, L. Marty, P. Jeanteur, and M. Piechaczyk. 1990. AUUUA motifs are dispensable for rapid degradation of the mouse c-myc mRNA. Oncogene 5:1585–1588.
  • Brewer, G. 1991. An A+U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell. Biol. 11:2460–2466.
  • Brewer, G., and J. Ross. 1988. Poly(A) shortening and degradation of the 3′ A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol. Cell. Biol. 8:1697–1708.
  • Brewer, G., and J. Ross. 1989. Regulation of c-myc mRNA stability in vitro by a labile destabilizer with an essential nucleic acid component. Mol. Cell. Biol. 9:1996–2006.
  • Chen, C.-Y., Y. You, and A.-B. Shyu. 1992. Two cellular proteins bind specifically to a purine-rich sequence necessary for the destabilization function of a c-fos protein coding region determinant of mRNA instability. Mol. Cell. Biol. 12:5748–5757.
  • Cole, M. D. 1986. The myc oncogene: its role in transformation and differentiation. Annu. Rev. Genet. 20:361–384.
  • Cole, M. D. 1990. The myb and myc nuclear oncogenes as transcriptional activators. Curr. Opin. Cell Biol. 2:502–508.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Fort, P., L. Marty, M. Piechaczyk, S. El Sabrouty, C. Dani, P. Jeanteur, and J. M. Blanchard. 1985. Various rat tissues express only one major species from the glyceraldehyde-3-phosphate dehydrogenase multigene family. Nucleic Acids Res. 13:1431–1442.
  • Ghazal, P., and J. A. Nelson. 1991. Enhancement of RNA polymerase II initiation complexes by a novel DNA control domain downstream from the cap site of the cytomegalovirus major immediate-early promoter. J. Virol. 65:2299–2307.
  • Greenberg, M. E., and E. B. Ziff. 1984. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature (London) 311:433–437.
  • Gritz, L., and J. Davies. 1983. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179–188.
  • Harrold, S., C. Genovese, B. Kobrin, S. L. Morrison, and C. Milcarek. 1991. A comparison of apparent mRNA half-life using kinetic labeling techniques vs. decay following administration of transcriptional inhibitors. Anal. Biochem. 198:19–29.
  • Jones, T. R., and M. D. Cole. 1987. Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3′ untranslated sequences. Mol. Cell. Biol. 7:4513–4521.
  • Kabnick, K. S., and D. E. Housman. 1988. Determinants that contribute to cytoplasmic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Mol. Cell. Biol. 8:3244–3250.
  • Karikó, K., S. W. Li, R. W. Sobol, R. J. Suhadolnik, R. Charubala, and W. Pfleiderer. 1987. Phosphorothioate analogues of 2′,5′- oligoadenylate. Activation of 2′,5′-oligoadenylate-dependent endoribonuclease by 2′,5′-phosphorothioate cores and 5′-monophosphates. Biochemistry 26:7136–7142.
  • Karikó, K., R. W. Sobol, L. Suhadolnik, S. W. Li, N. L. Reichenbach, R. J. Suhadolnik, R. Ramamurthy, and W. Pfleiderer. 1987. Phosphorothioate analogues of 2′,5′-oligoadenylate. Enzymatically synthesized 2′,5′-phosphorothioate dimer and trimer: unequivocal structural assignment and activation of 2′,5′-oligoadenylate-dependent endoribonuclease. Biochemistry 26:7127–7135.
  • Kruijer, W., J. A. Cooper, T. Hunter, and I. M. Verma. 1984. Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature (London) 312:711–716.
  • Lachman, H. M., G. Cheng, and A. I. Skoultchi. 1986. Transfection of mouse erythroleukemia cells with myc sequences changes the rate of induced commitment to differentiate. Proc. Natl. Acad. Sci. USA 83:6480–6484.
  • Laird-Offringa, I. A., C. L. deWit, P. Elfferich, and A. J. van der Eb. 1990. Poly(A) tail shortening is the translation-dependent step in c-myc mRNA degradation. Mol. Cell. Biol. 10:6132–6140.
  • Laird-Offringa, I. A., P. Elfferich, and A. J. van der Eb. 1991. Rapid c-myc mRNA degradation does not require (A+U)-rich sequences or complete translation of the mRNA. Nucleic Acids Res. 19:2387–2394.
  • Lawn, R. M., A. Efstratiadis, C. O'Connell, and T. Maniatis. 1980. The nucleotide sequence of the human β-globin gene. Cell 21:647–651.
  • Lehrach, H., D. Diamond, J. M. Wozney, and H. Boedtker. 1977. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751.
  • Luscher, B., and R. N. Eisenman. 1990. New light on Myc and Myb. I. Myc. Genes Dev. 4:2025–2035.
  • Mango, S. E., and M. D. Cole. Personal communication.
  • Müllner, E. W., and L. C. Kühn. 1988. A stem-loop in the 3′ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53:815–825.
  • Ross, J. 1976. A precursor of globin mRNA. J. Mol. Biol. 106:403–420.
  • Ross, J., and G. Kobs. 1986. H4 histone messenger RNA decay in cell-free extracts initiates at or near the 3′ terminus and proceeds 3′ to 5′. J. Mol. Biol. 188:579–593.
  • Ross, J., and T. Sullivan. 1985. Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood 66:1149–1154.
  • Shyu, A.-B., J. G. Belasco, and M. E. Greenberg. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5:221–231.
  • Shyu, A.-B., M. E. Greenberg, and J. G. Belasco. 1989. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 3:60–72.
  • Spencer, C. A., and M. Groudine. 1991. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56:1–48.
  • Suhadolnik, R. J., C. Lee, K. Karikó, and S. W. Li. 1987. Phosphorothioate analogues of 2′,5′-oligoadenylate. Enzymatic synthesis, properties, and biological activities of 2′,5′-phosphoro- thioates from adenosine 5′-O-(2-thiotriphosphate) and adenosine 5′-O-(3-thiotriphosphate). Biochemistry 26:7143–7149.
  • Swartwout, S. G., and A. J. Kinniburgh. 1989. c-myc RNA degradation in growing and differentiating cells: possible alternate pathways. Mol. Cell. Biol. 9:288–295.
  • Treisman, R. 1985. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell 42:889–902.
  • Wellington, C. L., M. E. Greenberg, and J. G. Belasco. 1993. The destabilizing elements in the coding region of c-fos mRNA are recognized as RNA. Mol. Cell. Biol. 13:5034–5042.
  • Wisdom, R., and W. Lee. 1990. Translation of c-myc mRNA is required for its post-transcriptional regulation during myogenesis. J. Biol. Chem. 265:19015–19021.
  • Wisdom, R., and W. Lee. 1991. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 5:232–243.
  • You, Y., C.-Y. A. Chen, and A.-B. Shyu. 1992. U-rich sequencebinding proteins (URBPs) interacting with a 20-nucleotide U-rich sequence in the 3′ untranslated region of c-fos mRNA may be involved in the first step of c-fos mRNA degradation. Mol. Cell. Biol. 12:2931–2940.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.