1
Views
8
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Stimulation of Polyomavirus DNA Replication by Wild-Type p53 Through the DNA-Binding Site

, , , &
Pages 2651-2663 | Received 15 Oct 1993, Accepted 26 Jan 1994, Published online: 30 Mar 2023

REFERENCES

  • Barak, Y., and M. Oren. 1992. Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J. 11:2115–2121.
  • Bargonetti, J., P. N. Friedman, S. E. Kern, B. Vogelstein, and C. Prives. 1991. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65:1083–1091.
  • Baru, M., M. Shlissel, and H. Manor. 1991. The yeast GAL4 protein transactivates the polyomavirus origin of DNA replication in mouse cells. J. Virol. 65:3496–3503.
  • Bennett-Cook, E. R., and J. A. Hassell. 1991. Activation of polyomavirus DNA replication by yeast GAL4 is dependent on its transcriptional activation domains. EMBO J. 10:959–969.
  • Braithwaite, A. W., H.-W. Sturzbecher, C. Addison, C. Palmer, K. Rudge, and J. R. Jenkins. 1987. Mouse p53 inhibits SV40 origin-dependent DNA replication. Nature (London) 329:458–460.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Cheng, L., and T. J. Kelly. 1989. Transcriptional activator nuclear factor I stimulates the replication of SV40 minichromosomes in vivo and in vitro. Cell 59:541–551.
  • Cheng, L., J. L. Workman, R. E. Kingston, and T. J. Kelly. 1992. Regulation of DNA replication in vitro by the transcriptional activation domain of GAL4-VP16. Proc. Natl. Acad. Sci. USA 89:589–593.
  • DePamphilis, M. L. 1988. Transcriptional elements as components of eukaryotic origins of DNA replication. Cell 52:635–638.
  • de Villiers, J., W. Schaffner, C. Tyndall, S. Lupton, and R. Kamen. 1984. Polyoma virus DNA replication requires an enhancer. Nature (London) 312:242–246.
  • Diller, L., J. Kassel, C. E. Nelson, M. A. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S. J. Baker, B. Vogelstein, and S. H. Friend. 1990. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol. 10:5772–5781.
  • Dilworth, S. M., C. E. P. Brewster, M. D. Jones, L. Lanfrancone, G. Pelicci, and P. G. Pelicci. 1994. Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc. Nature (London) 367:87–90.
  • Dutta, A., J. M. Ruppert, J. C. Aster, and E. Winchester. 1993. Inhibition of DNA replication factor RPA by p53. Nature (London) 365:79–82.
  • El-Deiry, W. S., S. E. Kern, J. A. Pietenpol, K. W. Kinzler, and B. Vogelstein. 1992. Definition of a consensus binding site for p53. Nature Genet. 1:45–49.
  • Eliyahu, D., N. Goldfinger, O. Pinhasi-Kimhi, G. Shaulsky, Y. Skurnik, N. Arai, V. Rotter, and M. Oren. 1988. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3:313–321.
  • Eliyahu, D., D. Michalovitz, S. Eliyahu, O. Pinhasi-Kimhi, and M. Oren. 1989. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc. Natl. Acad. Sci. USA 86:8763–8767.
  • Farmer, G., J. Bargonetti, H. Zhu, P. Friedman, R. Prywes, and C. Prives. 1992. Wild-type p53 activates transcription in vitro. Nature (London) 358:83–86.
  • Fields, S., and S. K. Jang. 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049.
  • Finlay, C. A., P. W. Hinds, T.-H. Tan, D. Eliyahu, M. Oren, and A. J. Levine. 1988. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol. Cell. Biol. 8:531–539.
  • Friedman, P. N., S. E. Kern, B. Vogelstein, and C. Prives. 1990. Wild-type, but not mutant, human p53 proteins inhibit the replication activities of simian virus 40 large tumor antigen. Proc. Natl. Acad. Sci. USA 87:9275–9279.
  • Funk, W. D., D. T. Pak, R. H. Karas, W. E. Wright, and J. W. Shay. 1992. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12:2866–2871.
  • Gannon, J. V., and D. P. Lane. 1987. p53 and DNA polymerase a compete for binding to SV40 T antigen. Nature (London) 329:456–458.
  • Ginsberg, D., F. Mechta, M. Yaniv, and M. Oren. 1991. Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci. USA 88:9979–9983.
  • Guo, Z.-S., and M. L. DePamphilis. 1992. Specific transcription factors stimulate simian virus 40 and polyomavirus origins of DNA replication. Mol. Cell. Biol. 12:2514–2524.
  • Halazonetis, T. D., L. J. Davis, and A. N. Kandil. 1993. Wild-type p53 adopts a ‘mutant’-like conformation when bound to DNA. EMBO J. 12:1021–1028.
  • Halazonetis, T. D., and A. N. Kandil. 1993. Conformational shifts propagate from the oligomerization domain of p53 to its tet-rameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 12:5057–5064.
  • Harvey, D. M., and A. J. Levine. 1991. p53 alteration is a common event in the spontaneous immortalization of primary Balb/c murine embryo fibroblasts. Genes Dev. 5:2375–2385.
  • He, Z., B. T. Brinton, J. Greenblatt, J. A. Hassell, and C. J. Ingles. 1993. The transactivator proteins VP16 and GAL4 bind replication factor A. Cell 73:1223–1232.
  • Hinds, P., C. Finlay, and A. J. Levine. 1989. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. Virol. 63:739–746.
  • Hollstein, M., D. Sidransky, B. Vogelstein, and C. C. Harris. 1991. p53 mutations in human cancers. Science 253:49–53.
  • Hupp, T. R., D. W. Meek, C. A. Midgley, and D. P. Lane. 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886.
  • Ishikawa, H., M. Asano, T. Kanda, S. Kumar, C. Gelinas, and Y. Ito. 1993. Two novel functions associated with the Rel oncoproteins: DNA replication and cell-specific transcriptional activation. Oncogene 8:2889–2896.
  • Kern, S. E., K. W. Kinzler, S. J. Baker, J. M. Nigro, V. Rotter, A. J. Levine, P. Friedman, C. Prives, and B. Vogelstein. 1991. Mutant p53 proteins bind DNA abnormally in vitro. Oncogene 6:131–136.
  • Kern, S. E., K. W. Kinzler, A. Bruskin, D. Jarosz, P. Friedman, C. Prives, and B. Vogelstein. 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711.
  • Kern, S. E., J. A. Pietenpol, S. Thiagalingam, A. Seymour, K. W. Kinzler, and B. Vogelstein. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–830.
  • Levine, A. J., J. Momand, and C. A. Finlay. 1991. The p53 tumour suppressor gene. Nature (London) 351:453–456.
  • Li, R., and M. R. Botchan. 1993. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 73:1207–1221.
  • Mack, D. H., J. Vartikar, J. M. Pipas, and L. A. Laimins. 1993. Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature (London) 363:281–283.
  • Martinez, J., I. Georgoff, J. Martinez, and A. J. Levine. 1991. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev. 5:151–159.
  • Mercer, W. E., D. Nelson, A. B. Deleo, L. J. Old, and R. Baserga. 1982. Microinjection of monoclonal antibody to protein p53 inhibits serum-induced DNA synthesis in 3T3 cells. Proc. Natl. Acad. Sci. USA 79:6309–6312.
  • Milner, J., and E. A. Medcalf. 1991. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65:765–774.
  • Mizushima, S., and S. Nagata. 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18:5322.
  • Murakami, Y., M. Asano, M. Satake, and Y. Ito. 1990. A tumor promoting phorbol ester, TPA, enchances polyomavirus DNA replication by activating the function of the viral enhancer. Oncogene 5:5–13.
  • Murakami, Y., M. Satake, Y. Yamaguchi-Iwai, M. Sakai, M. Muramatsu, and Y. Ito. 1991. The nuclear protooncogenes c-jun and c-fos as regulators of DNA replication. Proc. Natl. Acad. Sci. USA 88:3947–3951.
  • Pagano, M., M. Durst, S. Joswig, G. Draetta, and P. Jansen-Durr. 1992. Binding of the human E2F transcription factor to the retinoblastoma protein but not to cyclin A is abolished in HPV-16-immortalized cells. Oncogene 7:1681–1686.
  • Prives, C., and J. J. Manfredi. 1993. The p53 tumor suppressor protein: meeting review. Genes Dev. 7:529–534.
  • Raycroft, L., H. Wu, and G. Lozano. 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Segawa, K., A. Minowa, K. Sugasawa, T. Takano, and F. Hanaoka. 1993. Abrogation of p53-mediated transactivation by SV40 large T antigen. Oncogene 8:543–548.
  • Seto, E., A. Usheva, G. P. Zambetti, J. Momand, N. Horikoshi, R. Weinmann, A. J. Levine, and T. Shenk. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 89:12028–12032.
  • Shaulian, E., A. Zauberman, J. Milner, E. A. Davies, and M. Oren. 1993. Tight DNA binding and oligomerization are dispensable for the ability of p53 to transactivate target genes and suppress transformation. EMBO J. 12:2789–2797.
  • Shaulsky, G., N. Goldfinger, A. Ben-Ze'ev, and V. Rotter. 1990. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell. Biol. 10:6565–6577.
  • Soussi, T., C. Caron de Fromentel, and P. May. 1990. Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952.
  • Stillman, B. 1989. Initiation of eukaryotic DNA replication in vitro. Annu. Rev. Cell. Biol. 5:197–245.
  • Stürzbecher, H.-W., R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. R. Jenkins. 1992. A C-terminal α-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7:1513–1523.
  • Subler, M. A., D. W. Martin, and S. Deb. 1992. Inhibition of viral and cellular promoters by human wild-type p53. J. Virol. 66:4757–4762.
  • Tarunina, M., and J. R. Jenkins. 1993. Human p53 binds DNA as a protein homodimer but monomeric variants retain full transcription transactivation activity. Oncogene 8:3165–3173.
  • Truant, R., H. Xiao, C. J. Ingles, and J. Greenblatt. 1993. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268:2284–2287.
  • Unger, T., J. A. Mietz, M. Scheffner, C. L. Yee, and P. M. Howley. 1993. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol. Cell. Biol. 13:5186–5194.
  • Vasseur, M., M. Katinka, P. Herbomel, M. Yaniv, and D. Blangy. 1982. Physical and biological features of polyoma virus mutants able to infect embryonal carcinoma cell lines. J. Virol. 43:800–808.
  • Vogelstein, B., and K. W. Kinzler. 1992. p53 function and dysfunction. Cell 70:523–526.
  • Wang, E. H., P. N. Friedman, and C. Prives. 1989. The murine p53 protein blocks replication of SV40 DNA in vitro by inhibiting the initiation functions of SV40 large T antigen. Cell 57:379–392.
  • Wilcock, D., and D. P. Lane. 1991. Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature (London) 349:429–431.
  • Yewdell, J. W., J. V. Gannon, and D. P. Lane. 1986. Monoclonal antibody analysis of p53 expression in normal and transformed cells. J. Virol. 59:444–452.
  • Zambetti, G. P., J. Bargonetti, K. Walker, C. Prives, and A. J. Levine. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6:1143–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.