1
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Location of Sequences in Polyomavirus DNA That Are Required for Early Gene Expression In Vivo and In Vitro

, , &
Pages 2594-2609 | Published online: 31 Mar 2023

LITERATURE CITED

  • Adhya, S., and Gottesman, M. 1982. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell 29:939–944.
  • Banerji, J., Olson, L., and Schaffner, W. 1983. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729–740.
  • Banerji, J., Rusconi, S., and Schaffner, W. 1981. Expression of a 0 globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308.
  • Benoist, C., and Chambon, P. 1980. Deletions covering the putative promoter region of early mRNAs of simian virus 40 do not abolish T-antigen expression. Proc. Natl. Acad. Sci. U.S.A. 77:3865–3869.
  • Benoist, C., and Chambon, P. 1981. In vivo sequence requirements of the SV40 early promoter region. Nature (London) 290:304–315.
  • Blair, D. G., McClements, W. L., Oskarsson, M. K., Fischninger, P. J., and Vande Woude, G. J. 1980. Biological activity of cloned Moloney sarcoma virus DNA: terminally redundant sequences may enhance transformation efficiency. Proc. Natl. Acad. Sci. U.S.A. 77:3504–3508.
  • Breathnach, R., and Chambon, P. 1981. Organization and expression of eucaryotic split genes coding for proteins. Annu. Rev. Biochem. 50:349–383.
  • Busslinger, M., Portmann, R., Irminger, J. C., and Birn-steil, M. L. 1980. Ubiquitous and gene-specific regulatory 5′ sequences in a sea urchin histone DNA clone coding for histone protein variants. Nucleic Acids Res. 8:957–977.
  • Chang, E. H., Ellis, R. W., Scolnick, E. M., and Lowy, D. R. 1980. Transformation by cloned Harvey murine sarcoma virus DNA: efficiency increased by long terminal repeat DNA. Science 210:1249–1251.
  • Cogen, B. 1978. Virus-specific early RNA in 3T6 cells infected by a ts A mutant of polyoma virus. Virology 85:222–230.
  • Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C., and Chambon, P. 1980. Promoter sequences of eu-karyotic protein-coding genes. Science 209:1406–1413.
  • Cowie, A., Tyndall, C., and Kamen, R. 1981. Sequences at the capped 5′-ends of polyoma virus late region in mRNAs: an example of extreme terminal heterogeneity. Nucleic Acids Res. 9:6305–6322.
  • Cullen, B. R., Lomedeco, P. T., and Ju, G. 1984. Transcriptional interference in avian retroviruses–implications for the promoter insertion model of leukaemogenesis. Nature (London) 307:241–245.
  • de Villiers, J., Olson, L., Tyndall, C., and Schaffner, W. 1982. Transcriptional “enhancers” from SV40 and polyoma virus show a cell type preference. Nucleic Acids Res. 10:7965–7976.
  • de Villiers, J., and Schaffner, W. 1981. A small segment of polyoma virus DNA enhances the expression of a cloned β-globin gene over a distance of 1,400 base pairs. Nucleic Acids Res. 9:6251–6264.
  • Dierks, P., van Ooyen, A., Cochran, M. D., Dobkin, C., Reiser, J., and Weissmann, C. 1983. Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit B-globin gene in mouse 3T6 cells. Cell 32:695–706.
  • Dierks, P., van Ooyen, A., Mantei, N., and Weissmann, C. 1981. DNA sequences preceding the rabbit β-globin gene are required for formation in mouse L cells of 0 globin RNA with the correct 5′ terminus. Proc. Natl. Acad. Sci. U.S.A. 78:1411–1415.
  • Dynan, W. S., and Tjian, R. 1983. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell 32:669–680.
  • Efstratiadis, A., Posakony, J. W., Maniates, T., Lawn, R. M., O'Connell, C., Sprite, R. A., DeRiel, J. R., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J. 1980. The structure and evolution of the human β-globin gene family. Cell 21:653–668.
  • Enquist, L. W., Vande Woude, G. F., Wagner, M., Smiley, J. R., and Summers, W. C. 1979. Construction and characterization of a recombinant plasmid encoding the gene for the thymidine kinase of herpes simplex type 1 virus. Gene 7:335–342.
  • Everett, R. D., Baty, D., and Chambon, P. 1983. The repeated GC-rich motifs upstream from the TATA box are important elements of the SV40 early promoter. Nucleic Acids Res. 11:2447–2464.
  • Featherstone, M. S., Naujokas, M. A., Pomerantz, B. J., and Hassell, J. A. 1984. A plasmid vehicle suitable for the molecular cldning and characterization of mammalian promoters. Nucleic Acids Res. 12:7235–7249.
  • Fenton, R. G., and Basilico, C. 1981. Viral gene expression in polyoma virus-transformed rat cells and their cured revertants. J. Virol. 40:150–163.
  • Fenton, R. G., and Basilico, C. 1982. Changes in the topography of early region transcription during polyoma virus lytic infection. Proc. Natl. Acad. Sci. U.S.A. 79:7142–7146.
  • Flavell, A., Cowie, A., Legon, S., and Kamen, R. 1979. Multiple 5′-terminal cap structures in late polyoma virus RNA. Cell 16:357–371.
  • Flavell, A. J., Cowie, A., Arrand, J. R., and Kamen, R. 1980. Localization of three major capped 5′ ends of polyoma virus late mRNA's within a single tetranucleotide sequence in the viral genome. J. Virol. 33:902–908.
  • Friedmann, T., Esty, A., LaPorte, P., and Deininger, P. 1979. The nucleotide sequence and genome organization of the polyoma early region: extensive nucleotide and amino acid homology with SV40. Cell 17:715–724.
  • Fromm, M., and Berg, P. 1982. Deletion mapping of DNA regions required for SV40 early region promoter functions in vivo. J. Mol. Appl. Genet. 1:457–481.
  • Fujimura, F. R., Deininger, P. L., Friedman, T., and Linney, E. 1981. Mutation near the polyoma DNA replication origin permits productive infection of F9 embryonal carcinoma cells. Cell 23:809–814.
  • Gaudray, P., Tyndall, C., Kamen, R., and Cuzin, F. 1981. The high affinity binding site on polyoma virus DNA for the viral large T protein. Nucleic Acids Res. 9:5697–5710.
  • Ghosh, P. K., Lebowitz, P., Fresque, R. J., and Gluzman, Y. 1981. Identification of a promoter component involved in positioning the 5′ termini of simian virus 40 early mRNAs. Proc. Natl. Acad. Sci. U.S.A. 78:100–104.
  • Gilles, S. D., Morrison, S. L., Oi, V. T., and Tonegawa, S. 1983. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33:717–728.
  • Graham, F. L., and van der Eb, A. J. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467.
  • Gross, L. 1983. Oncogenic viruses, vol. 2, 3rd ed., p 737–828. Pergamon Press, Oxford.
  • Grosschedl, R., and Birnstiel, M. L. 1980. Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutants in vivo. Proc. Natl. Acad. Sci. U.S.A. 77:1432–1436.
  • Grosschedl, R., and Birnstiel, M. L. 1980. Spacer DNA sequences upstream of the T AT AAATA sequence are essential for promotion of H2A histone gene transcription in vivo. Proc. Natl. Acad. Sci. U.S.A. 77:7102–7106.
  • Grosveld, G. C., de Boer, E., Shewmaker, C. K., and Flavell, R. A. 1982. DNA sequences necessary for transcription of the rabbit β-globin gene in vivo. Nature (London) 295:120–126.
  • Gruss, P., Dhar, R., and Khoury, G. 1981. Simian virus 40 tandem repeated sequences as an element of the early promoter. Proc. Natl. Acad. Sci. U.S.A. 78:943–947.
  • Hansen, V., Tenen, D. G., Livingston, D. M., and Sharp, P. A. 1981. T antigen repression of SV40 early transcription from two promoters. Cell 27:603–612.
  • Hassell, J. A., Mueller, C., Mes, A.-M., Featherstone, M., Naujokas, M., Pomerantz, B., and Muller, W. 1982. The construction of polyoma virus vectors: functions required for gene expression, p. 71–77. In Gluzman, Y. (ed.), Eukaryotic viral vectors. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
  • Hassell, J. A., Topp, W. C., Rifkin, D. B., and Moreau, P. E. 1980. Transformation of rat embryo fibroblasts by cloned polyoma virus DNA fragments containing only part of the early region. Proc. Natl. Acad. Sci. U.S.A. 77:3978–3982.
  • Hearing, P., and Shenk, T. 1983. The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element. Cell 33:695–703.
  • Hen, R., Borrelli, E., Sassone-Corsi, P., and Chambon, P. 1983. An enhancer element is located 340 base pairs upstream from the adenovirus-2 El A capsite. Nucleic Acids Res. 11:8747–8760.
  • Herbomel, P., Saragosti, S., Blangy, D., and Yaniv, M. 1981. Fine structure of origin-proximal DNase I-hypersensitive region in wild-type and E.C. mutant polyoma. Cell 25:651–658.
  • Hirose, S., Takeuchi, K., Hon, H., Hirose, T., Inayama, S., and Suzuki, Y. 1984. Contact points between transcription machinery and the fibroin gene promoter deduced by functional tests of single-base substitution mutants. Proc. Natl. Acad. Sci. U.S.A. 81:1394–1397.
  • Hirose, S., Takeuchi, K., and Suzuki, Y. 1982. In vitro characterization of the fibroin gene promoter by the use of single-base substitution mutants. Proc. Natl. Acad. Sci. U.S.A. 79:7258–7262.
  • Hu, S.-L., and Manley, J. 1981. DNA sequence required for initiation of transcription in vitro from the major late promoter of adenovirus 2. Proc. Natl. Acad. Sci. U.S.A. 78:820–824.
  • Jat, P., Novak, U., Cowie, A., Tyndall, C., and Kamen, R. 1982. DNA sequences required for specific and efficient initiation of transcription at the polyoma virus early promoter. Mol. Cell. Biol. 2:737–751.
  • Jat, P., Roberts, J. W., Cowie, A., and Kamen, R. 1982. Comparison of the polyoma virus early and late promoters by transcription in vitro. Nucleic Acids Res. 10:871–887.
  • Joyner, A., Yamamoto, Y., and Bernstein, A. 1982. Retrovirus long terminal repeats activate expression of coding sequences for the herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. U.S.A. 79:1573–1577.
  • Kamen, R., Jat, P., Treisman, R., and Favaloro, J. 1982. 5′ termini of polyoma virus early region transcripts synthesized in vivo by wild-type virus and viable deletion mutants. J. Mol. Biol. 159:189–224.
  • Katinka, M., Kanin, M., Vasseur, M., and Blangy, D. 1980. Expression of polyoma early functions in mouse embryonal carcinoma cells depends on sequence rearrangements in the beginning of the late region. Cell 20:393–399.
  • Lee, D. C., Roeder, R. G., and Wold, W. S. M. 1982. DNA sequences affecting specific initiation of transcriptions in vitro from the E III promoter of adenovirus 2. Proc. Natl. Acad. Sci. U.S.A. 79:41–45.
  • Levinson, B., Khoury, G., Vande Woude, G., and Gruss, P. 1982. Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus. Nature (London) 295:568–572.
  • Linney, E., and Donerly, S. 1983. DNA fragments from F9 PyEC mutants increase expression of heterologous genes in transacted F9 cells. Cell 35:693–699.
  • Lirmins, L. A., Khoury, G., Gorman, C., Howard, B., and Gruss, P. 1982. Host-specific activation of transcription by tandem repeats from simian virus 40 and Moloney murine sarcoma virus. Proc. Natl. Acad. Sci. U.S.A. 79:6453–6457.
  • Luciw, P. A., Bishop, J. M., Varimus, H. E., and Capecchi, M. 1983. Locations and functions of retroviral and SV40 sequences that enhance biochemical transformations after microinjections of DNA. Cell 33:705–716.
  • Lusky, M., Berg, L., Weiner, H., and Botchan, M. 1983. Bovine papilloma virus contains an activator of gene expression at the distal end of the early transcription unit. Mol. Cell. Biol. 3:1108–1122.
  • Lusky, M., and Botchan, M. 1981. Inhibition of simian virus 40 replication in simian cells by specific pBR322 DNA sequences. Nature (London) 293:79–81.
  • Luthman, H., Nilsson, M. G., and Magnusson, G. 1982. Noncontiguous segments of the polyoma gene required in cis for DNA replication. J. Mol. Biol. 161:533–550.
  • Manley, J. L., Fire, A., Cano, A., Sharp, P. A., and Gefter, M. 1980. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. U.S.A. 77:3855–3859.
  • Mathis, D. J., and Chambon, P. 1981. The SV40 early region TATA box is required for accurate in vitro initiation of transcription. Nature (London) 290:310–315.
  • Maxam, A. M., and Gilbert, W. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • McKnight, S. L., Gavis, E. R., Kingsbury, R., and Axel, R. 1981. Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 25:385–398.
  • McKnight, S. L., and Kingsbury, R. 1982. Transcriptional control signals of a eukaryotic protein-coding gene. Science 217:316–324.
  • Mellon, P., Parker, V., Gluzman, Y., and Maniatis, T. 1981. Identification of DNA sequences required for transcription of the human α-l-globin gene in a new SV40 host-vector system. Cell 27:279–288.
  • Mes, A.-M., and Hassell, J. A. 1982. Polyoma viral middle Tantigen is required for transformation. J. Virol. 42:621–629.
  • Mills, F. C., Fisher, L. M., Kurode, R., Ford, A. M., and Gould, H. J. 1983. DNase I hypersensitive sites on the chromatin of human immunoglobulin heavy-chain genes. Nature (London) 306:809–812.
  • Moreau, P., Hen, R., Wasylyk, B., Everett, R., Gaub, M. P., and Chambon, P. 1981. The SV40 72 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res. 9:6047–6068.
  • Muller, W. J., Mueller, C. R., Mes, A.-M., and Hassell, J. A. 1983. Polyomavirus origin for DNA replication comprises multiple genetic elements. J. Virol. 47:586–599.
  • Muller, W. J., Naujokas, M. A., and Hassell, J. A. 1983. Polyomavirus-plasmid recombinants capable of replicating have an enhanced transforming potential. Mol. Cell. Biol. 3:1670–1674.
  • Nordheim, A., Lafer, E. M., Peck, L. J., Wang, J. C., Stollar, B. D., and Rich, A. 1982. Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by specific antibody binding. Cell 31:309–318.
  • Nordheim, A., and Rich, A. 1983. Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature (London) 303:674–679.
  • Picard, D., and Schaffner, W. 1984. A lymphocyte-specific enhancer in the mouse immunoglobulin κ gene. Nature (London) 307:80–82.
  • Pomerantz, B. J., and Hassell, J. A. 1984. Polyomavirus and simian virus 40 large T antigens bind to common DNA sequences. J. Virol. 49:925–937.
  • Pomerantz, B. J., Mueller, C. R., and Hassell, J. A. 1983. Polyomavirus large T antigen binds independently to multiple, unique regions on the viral genome. J. Virol. 47:600–610.
  • Queen, C., and Baltimore, D. 1983. Immunoglobulin gene transcription is activated by downstream sequence elements. Cell 33:741–748.
  • Rio, D., Robbins, A., Myers, R., and Tjian, R. 1980. Regulation of simian virus 40 early transcription in vitro by a purified tumor antigen. Proc. Natl. Acad. Sci. U.S.A. 77:5706–5710.
  • Rogers, D. T., Lemire, J. M., and Bostian, K. A. 1982. Acid phosphatase polypeptides in Saccharomyces cerevisiae are encoded by a differentially regulated multigene family. Proc. Natl. Acad. Sci. U.S.A. 79:2157–2161.
  • Rothwell, V. M., and Folk, W. R. 1983. Comparison of the DNA sequence of the Crawford small-plaque variant of polyomavirus with those of polyomaviruses A2 and strain 3. J. Virol. 48:472–480.
  • Ruley, H. E., and Fried, M. 1983. Sequence repeats in a polyoma virus DNA region important for gene expression. J. Virol. 47:233–237.
  • Scott, W. A., and Wigmore, D. J. 1978. Sites in simian virus 40 chromatin which are preferentially cleaved by endonucleases. Cell 15:1511–1518.
  • Sekikawa, K., and Levine, A. J. 1981. Isolation and characterization of polyoma host range mutants that replicate in nullpotential embryonal carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 78:1100–1104.
  • Shenk, T. 1981. Transcriptional control regions: nucleotide sequence requirements for initiation by RNA polymerase II and III. Curr. Top. Microbiol. Immunol. 93:25–46.
  • Soeda, E., Arrand, J. R., Smolar, N., and Griffin, B. E. 1979. Coding potential and regulatory signals of the polyoma virus genome. Nature (London) 283:445–453.
  • Treisman, R. 1980. Characteristics of polyoma late mRNA leader sequences by molecular cloning and DNA sequence analysis. Nucleic Acid Res. 8:4867–4888.
  • Treisman, R., Cowie, A., Favaloro, J., Jat, P., and Kamen, R. 1981. The structure of the spliced mRNAs encoding polyoma virus early region proteins. J. Mol. Appl. Genet. 1:83–92.
  • Tyndall, C., LaMantia, G., Thacker, C. M., Favaloro, J., and Kamen, R. 1981. A region of the polyoma virus genome between the replication origin and late protein coding sequences is required in cis for both early gene expression and viral DNA replication. Nucleic Acids Res. 9:6231–6249.
  • Wang, A. H.J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Mahel, G., and Rich, A. 1979. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature (London) 282:680–686.
  • Wasylyk, B., Derbyshire, R., Guy, A., Molko, D., Roget, A., Teolue, R., and Chambon, P. 1980. Specific in vitro transcription of conalbumin gene is drastically decreased by a single-point mutation in TATA box homology sequence. Proc. Natl. Acad. Sci. U.S.A. 77:7024–7028.
  • Wasylyk, B., Wasylyk, C., Augereau, P., and Chambon, P. 1983. The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32:503–514.
  • Weiner, H., and Botchan, M. R. 1984. An enhancer sequence from bovine papilloma virus DNA consists of two essential regions. Nucleic Acids Res. 12:2901–2916.
  • Weiner, H., Konig, M., and Gruss, P. 1983. Multiple point mutations affecting the simian virus 40 enhancer. Science 219:626–631.
  • Wigler, M., Pellicer, A., Silverstein, S., and Axel, R. 1978. Biochemical transfer of single-copy eukaryotic genes using total cellular DNA as donor. Cell 14:725–731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.