3
Views
30
CrossRef citations to date
0
Altmetric
Research Article

HeLa Cell β-Tubulin Gene Transcription Is Stimulated by Adenovirus 5 in Parallel with Viral Early Genes by an E1a-Dependent Mechanism

&
Pages 2792-2801 | Published online: 31 Mar 2023

LITERATURE CITED

  • Babich, A., Feldman, L. T., Nevins, J. R., Darnell, J. E., Jr., and Weinberger, C. 1983. Effect of adenovirus on metabolism of specific host mRNAs: transport control and specific translation discrimination. Mol. Cell. Biol. 3:1212–1221.
  • Babich, A., and Nevins, J. R. 1981. The stability of early adenovirus mRNA is controlled by the viral 72Kd DNA-binding protein. Cell 26:371–379.
  • Ben-Ze'ev, A., Farmer, S. R., and Penman, S. 1979. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell 17:319–325.
  • Berk, A. J., Lee, F., Harrison, T., Williams, J., and Sharp, P. A. 1979. Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17:935–944.
  • Carter, T. H., and Blanton, R. A. 1978. Possible role of the 72,000-dalton DNA-binding protein in regulation of adenovirus type 5 early gene expression. J. Virol. 25:664–674.
  • Cleveland, D. W., and Havercroft, J. C. 1983. Is apparent autoregulatory control of tubulin synthesis nontranscriptionally regulated? J. Cell. Biol. 97:919–924.
  • Cleveland, D. W., Lopata, M. A., McDonald, R. J., Cowan, N. J., Rutter, W. J., and Kirschner, M. W. 1980. Number and evolutionary conservation of α- and β-tubulin and cytoplasmic β- and γ-actin genes using specific cloned cDNA probes. Cell 20:95–105.
  • Cleveland, D. W., Lopata, M. A., Sherline, P., and Kirschner, M. W. 1981. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell 25:537–546.
  • Derman, E., Kranter, K., Walling, L., Weinberger, C., Ray, M., and Darnell, J., Jr. 1981. Transcriptional control of liver-specific mRNAs. Cell 23:731–739.
  • Emerson, B. M., and Felsenfeld, G. 1984. Specific factor conferring nuclease hypersensitivity at the 5′ end of the chicken adult β-globin gene. Proc. Natl. Acad. Sci. U.S.A. 81:95–99.
  • Favaloro, J., Treisman, R., and Kamen, R. 1980. Transcriptional maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. Methods Enzymol. 65:718–749.
  • Flint, S. J., Plumb, M. A., Yang, U.-C., Stein, G. S., and Stein, J. L. 1984. Effect of adenovirus infection on expression of human histone genes. Mol. Cell. Biol. 4:1363–1371.
  • Fraser, N., and Ziff, E. 1978. RNA structures near poly(A) of adenovirus-2 late messenger RNAs. J. Mol. Biol. 124:27–51.
  • Gaynor, R. B., and Berk, A. J. 1983. Cis-acting induction of adenovirus transcription. Cell 33:683–693.
  • Gaynor, R. B., Tsukamoto, A., Montell, C., and Berk, A. J. 1982. Enhanced expression of adenovirus transforming proteins. J. Virol. 44:276–285.
  • Graham, F., and van der Eb, A. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–457.
  • Graham, F. L., Abrahams, P. J., Mulder, C., Heyrecker, H. L., Warnaar, S. O., de Vries, F. A. J., Fiers, W., and van der Eb, A. J. 1974. Studies on the in vitro transformation by DNA and DNA fragments of human adenovirus and simian virus 40. Cold Spring Harbor Symp. Quant. Biol. 39:637–650.
  • Graham, J. L., Smiley, J., Russell, W. C., and Nairn, R. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–72.
  • Green, M. R., Treisman, R., and Maniatis, T. 1983. Transcriptional activation of cloned human B-globin genes by viral immediate early-gene products. Cell 35:137–148.
  • Hall, J. L., Dudley, L., Dobner, P. R., Lewis, S. A., and Cowan, N. J. 1983. Identification of two human β-tubulin isotypes. Mol. Cell. Biol. 3:854–862.
  • Handa, H., Kingston, R. E., and Sharp, P. A. 1983. Inhibition of adenovirus early region IV transcription in vitro by a purified viral DNA binding protein. Nature (London) 302:545–547.
  • Hearing, P., and Shenk, T. 1983. The adenovirus type 5 Ela transcription control region contains a duplicated enhancer element. Cell 33:695–703.
  • Imperiale, M. J., Feldman, L. T., and Nevin, J. R. 1983. Activation of gene expression in DNA transfections by adenovirus and herpesvirus regulatory genes acting in trans and by a cis-acting adenovirus enhancer element. Cell 35:127–136.
  • Jones, N., and Shenk, T. 1979. An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc. Natl. Acad. Sci. U.S.A. 76:3665–3669.
  • Jones, N., and Shenk, T. 1979. Isolation of adenovirus-2 type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17:683–689.
  • Kao, H.-T., and Nevins, J. R. 1983. Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol. Cell. Biol. 3:2058–2065.
  • Kit, S., Dubbs, D. R., deTorres, R. A., and Mel nick, J. L. 1965. Enhanced thymidine kinase activity following infection of green monkey kidney cells by simian adenovirus, simian papovavinls and an adenovirus-SV40 hybrid. Virology 27:453–457.
  • Ledinko, N. 1967. Stimulation of DNA synthesis and thymidine kinase activity in human embryonic kidney cells infected by adenovirus 2 or 12. Cancer Res. 12:1459.
  • Lemischka, I., and Sharp, P. A. 1982. The sequence of an expressed rat α-tubulin gene and a pseudogene with an inserted repetitive element. Nature (London) 300:330–335.
  • Lee, M. G.-S., Lewis, S. A., Wilde, C. D., and Cowan, N. J. 1983. Evolutionary history of a multigene family: an expressed human β-tubulin gene and three processed pseudogenes. Cell 33:477–487.
  • Li, G. C., Schrieve, D. C., and Zena, W. 1982. Correlation between synthesis of heat-shock proteins and development of tolerance to heat and to adriamycin in Chinese hamster fibroblasts: heat shock and other inducers, p. 395–404. In Schlesinger, M. J., Ashburner, M., and Tissieres, A. (ed.), Heat shock: from bacteria to man. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
  • Maniatis, T., Jeffrey, A., and Kleid, D. C. 1975. Nucleotide sequence of the rightward operator of phage lambda. Proc. Natl. Acad. Sci. U.S.A. 72:1184–1188.
  • Montell, C., Fisher, E. F., Caruthers, M. H., and Berk, A. J. 1982. Resolving the function of overlapping viral genes by site-specific mutagenesis at a mRNA splice site. Nature (London) 295:380–384.
  • Nevins, J. R. 1981. Mechanism of activation of early viral transcription by the adenovirus Ela gene product. Cell 26:213–220.
  • Nevins, J. R., Ginsberg, H. S., Blanchard, J.-M., Wilson, M. C., and Darnell, J. E., Jr. 1979. Regulation of the primary expression of the early adenovirus transcription units. J. Virol. 32:727–733.
  • Nevins, J. R., and Jensen-Winkler, J. J. 1980. Regulation of early adenovirus transcription: a protein product of early region 2 specifically represses region 4 transcription. Proc. Natl. Acad. Sci. U.S.A. 77:1893–1897.
  • Nevins, J. R., and Wilson, M. C. 1980. Expression of the adenovirus-2 major late transcription unit during early infection: regulation at the level of transcription termination and RNA processing. Nature (London) 290:113–118.
  • Osborne, T. F., Gaynor, R. B., and Berk, A. J. 1982. The T-A-T-A homology and the mRNA 5′ untranslated sequence are not required for expression of essential adenovirus Ela functions. Cell 29:139–148.
  • Perricaudet, M., Akusjarvi, G., Virtanen, A., and Petterson, U. 1979. Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature (London) 281:694–696.
  • Postel, E. H., and Levine, A. J. 1975. Studies on the regulation of deoxypyrimidine kinases in normal, SV40 transformed and SV40 and adenovirus-infected mouse cells in cultures. Virology 63:404–420.
  • Raj, N. B. K., and Pitha, P. M. 1981. Analysis of interferon mRNA in human fibroblast cells induced to produce interferon. Proc. Natl. Acad. Sci. U.S.A. 78:7426–7430.
  • Riccardi, R., Jones, R., Cepko, C., Sharp, P., and Roberts, B. 1981. Expression of early adenovirus genes requires a viral encoded acidic polypeptide. Proc. Natl. Acad. Sci. U.S.A. 78:6121–6125.
  • Schrier, P. I., Bernards, R., Vaessen, R. T. M. J., Houweling, A., and van der Eb, A. J. 1983. Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed cells. Nature (London) 305:771–775.
  • Shaw, A. R., and Ziff, E. B. 1980. Transcripts from the adenovirus-2 major late promoter yield a single family of 3′ co-terminal mRNAs and five late families. Cell 22:905–916.
  • Solnick, D., and Anderson, M. A. 1982. Transformation-deficient adenovirus mutant defective in expression of region 1A but not region IB. J. Virol. 42:106–113.
  • Takahashi, M., Veda, S., and Ogina, T. 1966. Enhancement of the thymidine kinase activity of human embryonic kidney cells by infection with human adenovirus types 5 and 12. Virology 30:741–743.
  • Thomas, G. P., and Mathews, M. B. 1980. DNA replication and the early to late transition in adenovirus infection. Cell 22:523–533.
  • Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. U.S.A. 77:5201–5205.
  • Treisman, R., Green, M. R., and Maniatis, T. 1983. Cis- and trans-activation of globin transcription in transient assays. Proc. Natl. Acad. Sci. U.S.A. 80:7428–7432.
  • Weeks, D. L., and Jones, N. C. 1983. E1A control of gene expression is mediated by sequences 5′ to the transcriptional starts of the early viral genes. Mol. Cell. Biol. 3:1222–1234.
  • Wilde, C. D., Crowther, C. E., and Cowan, N. J. 1982. Diverse mechanisms is the generation of human β-tubulin pseudogenes. Science 217:549–552.
  • Wilde, C. D., Crowther, C. E., Cripe, T. P., Gwo-Shu Lee, M., and Cowan, N. J. 1982. Evidence that a human β-tubulin pseudo-gene is derived from its corresponding mRNA. Nature (London) 292:83–84.
  • Yoder, S. S., Robberson, B. L., Leys, E. J., Hook, A. G., Al-Ubaidi, M., Yeung, C.-Y., Kellems, R. E., and Berget, S. M. 1983. Control of cellular gene expression during adenovirus infection: induction and shut-off of dihydrofolate reductase gene expression by adenovirus type 2. Mol. Cell. Biol. 3:819–828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.