8
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Two Functional α-Tubulin Genes of the Yeast Saccharomyces cerevisiae Encode Divergent Proteins

, , , &
Pages 3711-3721 | Received 01 Mar 1986, Accepted 23 Jun 1986, Published online: 31 Mar 2023

LITERATURE CITED

  • Adams, A. E. M., and J. R. Pringle. 1984. Localization of actin and tubulin in wild-type and morphogenetic mutants of Saccharomyces cerevisiae. J. Cell Biol. 98:934–945.
  • Arce, C. A., M. E. Hallak, J. A. Rodriguez, H. S. Barra, and R. Caputto. 1978. Capability of tubulin and microtubules to incorporate and to release tyrosine and phenylalanine and the effect of the incorporation of these amino acids on tubulin assembly. J. Neurochem. 31:205–210.
  • Argarana, C. E., H. S. Barra, and R. Caputto. 1978. Release of [14C]tyrosine from tubulinyl-[14C]tyrosine by brain extract. Separation of a carboxy peptidase from tubulin tyrosine ligase. Mol. Cell. Biochem. 19:17–22.
  • Barra, H. S., C. A. Arce, J. A. Rodriguez, and R. Caputto. 1973. Incorporation of phenylalanine as a single unit into rat brain protein: reciprocal inhibition by phenylalanine and tyrosine of their respective incorporations. J. Neurochem. 21:1241–1251.
  • Barra, H. S., C. A. Arce, J. A. Rodriguez, and R. Caputto. 1974. Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem. Biophys. Res. Commun. 60:1384–1390.
  • Barra, H. S., J. A. Rodriguez, C. A. Arce, and R. Caputto. 1973. A soluble preparation from rat brain that incorporates into its own proteins [14C]arginine by a ribonuclease-sensitive system and [14C]tyrosine by a ribonuclease-insensitive system. J. Neurochem. 20:97–108.
  • Benton, W., and R. Davis. 1977. Screening of λ-gt recombinant clones by hybridization to single plaques in situ. Science 196:180–182.
  • Blattner, F., B. Williams, A. Bulechl, K. Thompson, H. Faber, L. Furlong, D. Grunwald, D. Kiefer, D. Moore, J. Schumm, E. Sheldon, and O. Smithies. 1977. Charon phages: safer derivatives of bacteriophage λ for DNA cloning. Science 196:161–169.
  • Bolivar, F., R. Rodriguez, P. Green, M. Betlach, H. Heynecker, H. Boyer, J. Crossa, and S. Falkow. 1977. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113.
  • Bond, J. F., J. L. Fridovich-Keil, L. Pillus, R. C. Mulligan, and F. Solomon. 1986. A chicken-yeast chimeric β-tubulin protein is incorporated into mouse microtubules in vivo. Cell 44:500–509.
  • Botstein, D., and R. W. Davis. 1982. Principles and practice of recombinant DNA research with yeast, p. 607–638. In J. N. Strathem, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces, vol. 2. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Boyer, H., and D. Roulland-Dussoix. 1969. A complementation analysis of the restriction and modification of DNA in E. coli. J. Mol. Biol. 41:459–472.
  • Byers, B. 1981. Cytology of the yeast life cycle, p. 59–96. In J. N. Strathem, E. W. Jones, and J. R. Broach (ed.), The Molecular Biology of the Yeast Saccharomyces, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Carlson M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Cleveland, D. W., and K. F. Sullivan. 1985. Molecular biology and genetics of tubulin. Annu. Rev. Biochem. 54:331–365.
  • Davidse, L., and W. Flach. 1977. Differential binding of methylbenzimidazol-2-yl-carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in strains of Aspergillus nidulans. J. Cell. Biol. 72:174–193.
  • Davis, R., D. Botstein, and J. Roth. 1980. Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Deanin, G. G., and M. W. Gordon. 1976. The distribution of tyrosyltubulin ligase in brain and other tissues. Biochem. Biophys. Res. Commun. 71:676–683.
  • Deanin, G. G., S. F. Preston, R. K. Hanson, and M. W. Gordon. 1980. Mechanism of turnover of the carboxy terminal tyrosine of α-tubulin. Eur. J. Biochem. 109:207–216.
  • Delgado, M. A., and J. Conde. 1984. Benomyl prevents nuclear fusion in Saccharomyces cerevisiae. Mol. Gen. Genet. 193:188–189.
  • Gundersen, G. G., M. H. Kalnoski, and J. C. Bulinski. 1984. Distinct populations of microtubules: tyrosinated and nontyrosinated α-tubulin are distributed differently in vivo. Cell 38:779–789.
  • Hanahan, D., and M. Meselson. 1980. Plasmid screening at high colony density. Gene 10:63–67.
  • Hartwell, L. H. 1974. Saccharomyces cerevisiae cell cycle. Bacteriol. Rev. 38:164–198.
  • Hiraoka, Y., T. Toda, and M. Yanagida. 1984. The NDA3 gene of fission yeast encodes β-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39:349–358.
  • Kilmartin, J. 1981. Purification of yeast tubulin by self-assembly in vitro. Biochemistry 20:3629–3633.
  • Kilmartin, J., and A. Adams. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell. Biol. 98:922–933.
  • King, S. M., and J. S. Hyams. 1982. The mitotic spindle of Saccharomyces cerevisiae: assembly, structure, and function. Micron 13:93–117.
  • Kumar, N., and M. Flavin. 1981. Preferential action of a brain detyrosinating carboxypeptidase on polymerized tubulin. J. Biol. Chem. 256:7678–7686.
  • Kuo, C., and J. L. Campbell. 1983. Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Mol. Cell. Biol. 3:1730–1737.
  • Langford, C. J., and P. Gallwitz. 1983. Evidence for an introncontaining sequence required for the splicing of yeast RNA polymerase II transcripts. Cell 33:519–527.
  • Langford, C. J., F.-J. Klinz, C. Donath, and D. Gallwitz. 1984. Point mutations identify the conserved, intron-contained TACTAAC box as an essential splicing signal sequence in yeast. Cell 36:645–653.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Moens, P. B., and E. Rapport. 1971. Spindles, spindle plaques, and meiosis, in the yeast Saccharomyces cerevisiae (Hansen). J. Cell. Biol. 50:344–361.
  • Nasmyth, K., and P. Nurse. 1981. Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 182:119–124.
  • Neff, N., J. H. Thomas, P. Grisafi, and D. Botstein. 1983. Isolation of the β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33:211–219.
  • Newman, A. J., R. Lin, S. Cheng, and J. Abelson. 1985. Molecular consequences of specific intron mutations on yeast mRNA splicing in vivo and in vitro. Cell 42:335–344.
  • Nurse P., and P. Thuriaux. 1980. Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96:627–637.
  • Nurse, P., P. Thuriaux, and K. Nasmyth. 1976. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 146:167–178.
  • Oakley, B., and N. R. Morris. 1980, Nuclear movement is β-tubulin dependent in Aspergillus nidulans. Cell 19:255–262.
  • Parker, R., and C. Guthrie. 1985. A point mutation in the conserved hexanucleotide at a yeast 5′ splice junction uncouples recognition, cleavage, and ligation. Cell 41:107–118.
  • Peterson, J. B., and H. Ris. 1976. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J. Cell Sci. 22:219–242.
  • Pikielny, C. W., J. L. Teem, and M. Rosbash. 1983. Evidence for the biochemical role of an internal sequence in yeast nuclear mRNA introns: implications for U1 RNA and metazoan mRNA splicing. Cell 34:395–403.
  • Pillus, L., and F. Solomon. 1986. Components of microtubular structures in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83:2468–2472.
  • Ponstingl, H., E. Krauhs, M. Little, and T. Kempf, 1981. Complete amino acid sequence of α-tubulin from porcine brain. Proc. Natl. Acad. Sci. USA 78:2757–2761.
  • Preston, S. F., G. G. Deanin, R. K. Hanson, and M. W. Gordon. 1979. The phylogenetic distribution of tubulin: tyrosine ligase. J. Mol. Evol. 13:233–244.
  • Pringle, J. R., and L. H. Hartwell. 1981. The Saccharomyces cerevisiae cell cycle, p. 97–142. In J. N. Strathem, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Pringle, J. R., S. H. Lillie, A. E. M. Adams, C. W. Jacobs, B. K. Haarer, K. G. Coleman, J. S. Robinson, L. Bloom, and R. A. Preston. 1986. Cellular morphogenesis in the yeast cell cycle, p. 193–209. In J. Hicks (ed.), Yeast cell biology. Alan R. Liss, New York.
  • Quinlan, R. A., C. I. Pogson, and K. Gull. 1980. The influence of the microtubule inhibitor methyl benzimidazol-2-yl-carbamate (MBC) on nuclear division and the cell cycle in Saccharomyces cerevisiae. J. Cell Sci. 46:341–352.
  • Raff, E. C. 1984. Genetics of microtubule systems. J. Cell Biol. 99:1–10.
  • Raybin, D., and M. Flavin. 1977. Enzyme which specifically adds tyrosine to the α-chain of tubulin. Biochemistry 16:2189–2194.
  • Rigby, P. W. J., M. Dieckman, C. Rhodes, and P. Berg. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251.
  • Rodriguez, J. A., and G. G. Borisy. 1979. Tyrosination state of free tubulin subunits and tubulin disassembled from microtubules of rat brain tissue. Biochem. Biophys. Res. Commun. 89:893–899.
  • Rosbash, M., P. K. W. Harris, J. L. Woolford, and J. L. Teem. 1981. The effects of temperature-sensitive RNA mutants on the transcription products from cloned ribosomal protein genes of yeast. Cell 24:679–686.
  • Rose, M., P. Grisafi, and D. Botstein. 1984. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene 29:113–124.
  • Roy, D., and P. A. Fantes. 1983. Benomyl-resistant mutants of Schizosaccharomyces pombe cold-sensitive for mitosis. Curr. Genet. 6:195–202.
  • Schatz, P. J., F. Solomon, and D. Botstein. 1986. Genetically essential and nonessential α-tubulin genes specify functionally interchangeable proteins. Mol. Cell. Biol. 6:3722–3733.
  • Seed, B. 1983. Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo. Nucleic Acids Res. 11:2427–2445.
  • Sheirr-Neiss, G., M. Lai, and N. Morris. 1978. Identification of a gene for β-tubulin in Aspergillus nidulans. Cell 15:639–647.
  • Sherman, F., G. Fink, and C. Lawrence. 1974. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shortle, D., P. Novick, and D. Botstein. 1984. Construction and genetic characterization of temperature-sensitive alleles of the yeast actin gene. Proc. Natl. Acad. Sci. USA 81:4889–4893.
  • Silfiow, C. D., R. L. Chisholm, T. W. Conner, and L. P. W. Ranum. 1985. The two α-tubulin genes of Chlamydomonas reinhardi code for slightly different proteins. Mol. Cell. Biol. 5:2389–2398.
  • Snyder, J., and J. McIntosh. 1976. Biochemistry and physiology of microtubules. Annu. Rev. Biochem. 45:699–720.
  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments seperated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • St. John, T., and R. Davis. 1981. The organization and transcription of the galactose gene cluster of Saccharomyces. J. Mol. Biol. 152:285–315.
  • Teem, J. L., N. Abovich, N. F. Kaufer, W. F. Schwindinger, J. R. Warner, A. Levy, J. Woolford, R. J. Leer, M. M. C. van Raamsdonk-Duin, W. H. Mager, R. J. Planta, L. Schultz, J. D. Friesen, H. Fried, and M. Rosbash. 1984. A comparison of yeast ribosomal protein gene DNA sequences. Nucleic Acids Res. 12:8295–8312.
  • Teem, J. L., J. R. Rodriguez, L. Tung, and M. Rosbash. 1983. The ma2 mutation of yeast affects the processing of actin mRNA as well as ribosomal protein mRNA's. Mol. Gen. Genet. 192:101–103.
  • Thomas, J. H., N. F. Neff, and D. Botstein. 1985. Isolation and characterization of mutations in the β-tubulin gene of Saccharomyces cerevisiae. Genetics 112:715–734.
  • Toda, T., Y. Adachi, Y. Hiraoka, and M. Yanagida. 1984. Identification of the pleiotropic cell division cycle gene NDA2 as one of two different α-tubulin genes in Schizosaccharomyces pombe. Cell 37:233–242.
  • Toda, T., K. Umesono, A. Hirata, and M. Yanagida. 1983. Cold-sensitive nuclear division arrest mutants of the fission yeast Schizosaccharomyces pombe. J. Mol. Biol. 168:251–270.
  • Umesono, K., T. Toda, S. Hayashi, and M. Yanagida. 1983. Two cell division cycle genes NDA2 and NDA3 of the fission yeast Schizosaccharomyces pombe control microtubular organization and sensitivity to anti-mitotic benzimidazole compounds. J. Mol. Biol. 168:271–284.
  • Wahl, G. M., M. Stern, and G. R. Stark. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization using dextran sulfate. Proc. Natl. Acad. Sci. USA 76:3683–3687.
  • Wood, J. S. 1982. Genetic effects of methyl benzimidazole-2-yl- carbamate on Saccharomyces cerevisiae. Mol. Cell. Biol. 2:1064–1079.
  • Wood, J. S., and L. H. Hartwell. 1982. A dependent pathway of gene functions leading to chromosome segregation in S. cerevisiae. J. Cell Biol. 94:718–726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.