11
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Effects of Null Mutations in the Hexokinase Genes of Saccharomyces cerevisiae on Catabolite Repression

&
Pages 4046-4052 | Received 25 Apr 1986, Accepted 30 Jun 1986, Published online: 31 Mar 2023

LITERATURE CITED

  • Andreadis, A., Y.-P. Hsu, G. Kohlhaw, and P. Schimmel. 1982. Nucleotide sequence of yeast LEU2 shows 5′-noncoding region has sequences cognate to leucine. Cell 31:319–325.
  • Bergmeyer, H. U. 1970. Methoden der enzymatischen Analyse, 2nd ed., p. 432. Verlag Chemie, Weinheim, Federal Republic of Germany.
  • Bolivar, F., R. Rodriguez, P. Green, M. Betlach, H. Heynecker, H. Boyer, J. Crossa, and S. Falkow. 1977. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113.
  • Botstein, D., and R. W. Davis. 1982. Principles and practice of recombinant DNA research with yeast, p. 607–638. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces cerevisiae: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Botstein, D., S. C. Falso, S. Stewart, M. Brennan, S. Sherer, D. Stinchcomb, K. Struhl, and R. Davis. 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Botstein, D., and D. Shortle. 1985. Strategies and applications of in vitro mutagenesis. Science 229:1193–1201.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Carlson, M., B. C. Osmond, and D. Botstein. 1981. Mutants of yeast defective in sucrose utilization. Genetics 98:25–40.
  • Carlson, M., B. C. Osmond, L. Neigeborn, and D. Botstein. 1984. A suppressor of snfl mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107:19–32.
  • Carlson, M., R. Taussig, S. Kustu, and D. Botstein. 1983. The secreted form of invertase in Saccharomyces cerevisiae is synthesized from mRNA encoding a signal sequence. Mol. Cell. Biol. 3:439–447.
  • Celenza, J. L., and M. Carlson. 1984. Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressed genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:49–53.
  • Celenza, J. L., and M. Carlson. 1984. Structure and expression of the SNF1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:54–60.
  • Ciriacy, M. 1977. Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in catabolite derepression. Mol. Gen. Genet. 154:213–220.
  • Ciriacy, M. 1978. A yeast mutant with glucose resistant formation of mitochondrial enzymes. Mol. Gen. Genet. 159:329–335.
  • de Crombrugghe, B., S. Busby, and H. Buc. 1984. Activation of transcription by the cyclic AMP receptor protein. Science 224:831–837.
  • Douglas, H., and D. Hawthorne. 1964. Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces cerevisiae. Genetics 49:837–844.
  • Entian, K.-D. 1980. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in catabolite repression in yeast. Mol. Gen. Genet. 178:633–637.
  • Entian, K.-D. 1981. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for a regulatory control of hexokinase PII synthesis. Mol. Gen. Genet. 184:278–282.
  • Entian, K.-D., and K.-U. Frohlich. 1984. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a Afunctional enzyme with catalytic and regulatory domains for triggering catabolite repression. J. Bacteriol. 158:29–35.
  • Entian, K.-D., E. Kopetzki, K.-U. Frohlich, and D. Mecke. 1984. Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeast. Mol. Gen. Genet. 198:50–54.
  • Entian, K.-D., and D. Mecke. 1982. Genetic evidence for a role of hexokinase isoenzyme PII in carbon catabolite repression in Saccharomyces cerevisiae. J. Biol. Chem. 257:870–874.
  • Frohlich, K.-U., K.-D. Entian, and D. Mecke. 1984. Cloning and restriction analysis of the hexokinase PII gene of the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 194:144–148.
  • Frohlich, K.-U., K.-D. Entian, and D. Mecke. 1985. The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repression. Gene 36:105–111.
  • Goldstein, A., and J. O. Lampen. 1975. β-D-Fructofuranoside fructohydrolase from yeast. Methods Enzymol. 42C:504–511.
  • Guarente, L., B. Lalonde, P. Gifford, and E. Alani. 1984. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 36:503–511.
  • Holm, C., D. W. Meeks-Wagner, W. L. Fangman, and D. Botstein. 1986. A rapid, efficient method for isolating DNA from yeast. Gene 42:169–173.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Kopetzki, E., K.-D. Entian, and D. Mecke. 1985. Complete nucleotide sequence of the hexokinase PI gene (HXK1) of Saccharomyces cerevisiae. Gene 39:95–102.
  • Kuo, C., and J. L. Campbell. 1983. Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Mol. Cell. Biol. 3:1730–1737.
  • Lobo, Z., and P. K. Maitra. 1977. Genetics of yeast hexokinase. Genetics 86:727–744.
  • Lowry, O. H., N. J. Rosebrough, A. L. Fair, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Magasanik, B. 1961. Catabolite repression. Cold Spring Harbor Symp. Quant. Biol. 26:249–256.
  • Magasanik, B. 1970. Glucose effect: inducer exclusion and repression, p. 189–219. In J. R. Beckwith and D. Zipser (ed.), The lactose operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Maitra, P. K., and Z. Lobo. 1983. Genetics of yeast glucokinase. Genetics 105:501–515.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Matern, H., and H. Holzer. 1977. Catabolite inactivation of the galactose uptake system in yeast. J. Biol. Chem. 252:6399–6402.
  • Matsumoto, K., A. Toh-e, and Y. Oshima. 1981. Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:83–93.
  • Matsumoto, K., T. Yoshmatsu, and Y. Oshima. 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. J. Bacteriol. 153:1405–1414.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mortimer, R. K., and D. C. Harthorne. 1969. Yeast genetics, p. 385–460. In A. H. Rose and J. S. Harrison (ed.), The yeast, vol. 1. Academic Press, Inc., New York.
  • Neigeborn, L., and M. Carlson. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858.
  • Nogi, Y., and T. Fukasawa. 1984. Nucleotide sequence of the yeast regulatory gene GAL80. Nucleic Acids Res. 12:9287–9298.
  • Orr-Weaver, T., J. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Pinkham, J. L., and L. Guarente. 1985. Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:3410–3416.
  • Rigby, P., M. Dieckman, C. Rhodes, and P. Berg. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251.
  • Rose, M., and D. Botstein. 1983. Structure and function of the yeast URA3 gene. J. Mol. Biol. 170:883–904.
  • Rose, M., P. Grisafi, and D. Botstein. 1984. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene 29:113–124.
  • Rothstein, R. J. 1983. One-step disruption in yeast. Methods Enzymol. 101:202–211.
  • Schatz, P. J., F. Solomon, and D. Botstein. 1986. Genetically essential and nonessential α-tubulin genes specify functionally interchangeable proteins. Mol. Cell. Biol. 6:3722–3733.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1978. Laboratory manual for a course: methods in yeast genetics, revised edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shortle, D., D. DiMaio, and D. Nathans. 1981. Directed mutagenesis. Annu. Rev. Genet. 15:256–294.
  • Smith, M. 1985. In vitro mutagenesis. Annu. Rev. Genet. 19:423–462.
  • Southern, E. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Stachelek, C., J. Stachelek, J. Swan, D. Botstein, and W. Konigsberg. 1986. Identification, cloning and sequence determination of genes specifying hexokinase A and B from yeast. Nucleic Acids Res. 14:945–963.
  • Struhl, K. 1984. Genetic properties and chromatin structure of the yeast Gal regulatory element: a enhancer-like sequence. Proc. Natl. Acad. Sci. USA 81:7865–7869.
  • Struhl, K. 1985. Naturally occurring poly(dA-dT) sequences are upstream promoter elements of constitutive transcription in yeast. Proc. Natl. Acad. Sci. USA 82:8419–8423.
  • Struhl, K., and R. W. Davis. 1980. A physical, genetic and transcriptional map of the cloned HIS3 gene region of Saccharomyces cerevisiae. J. Mol. Biol. 136:309–332.
  • Wahl, G. M., M. Stern, and G. R. Stark. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization using dextran sulfate. Proc. Natl. Acad. Sci. USA 76:3683–3687.
  • Walsh, R. B., G. Kawasaki, and D. G. Fraenkel. 1983. Cloning of genes that complement yeast hexokinase and glucokinase mutants. J. Bacteriol. 154:1002–1004.
  • Yocum, R. R., S. Hanley, R. West, Jr., and M. Ptashne. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1985–1998.
  • Yocum, R. R., and M. Johnston. 1984. Molecular cloning of the GAL80 gene from Saccharomyces cerevisiae and characterization of a gal80 deletion. Gene 32:75–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.