3
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Alternative RNA Splicing Generates Transcripts Encoding a Thorax-Specific Isoform of Drosophila melanogaster Myosin Heavy Chain

, , , , , & show all
Pages 2511-2519 | Received 10 Feb 1986, Accepted 14 Apr 1986, Published online: 31 Mar 2023

LITERATURE CITED

  • Barany, M. 1967. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50:197–218.
  • Benoit, R., P. Daubas, M.-A. Akimenko, A. Cohen, I. Garner, J.-L. Guenet, and M. Buckingham. 1984. A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell 39:129–140.
  • Benyajati, C., A. R. Place, D. A. Powers, and W. Sofer. 1981. Alcohol dehydrogenase gene of Drosophila melanogaster: relationship of intervening sequences to functional domains in the protein. Proc. Natl. Acad. Sci. USA 78:2717–2721.
  • Benyajati, C., N. Spoerel, H. Haymerle, and M. Ashburner. 1983. The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5′ end in different developmental stages. Cell 33:125–133.
  • Bernstein, S. I., and J. J. Donady. 1980. RNA synthesis and coding capacity of polyadenylated and nonpolyadenylated mRNA from cultures of differentiating Drosophila melanogaster myoblasts. Dev. Biol. 79:388–398.
  • Bernstein, S. I., E. A. Fyrberg, and J. J. Donady. 1978. Isolation and partial characterization of Drosophila myoblasts from primary cultures of embryonic cells. J. Cell Biol. 78:856–865.
  • Bernstein, S. I., K. Mogami, J. J. Donady, and C. P. Emerson, Jr. 1983. Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. Nature (London) 302:393–397.
  • Breitbart, R. E., H. T. Nguyen, R. M. Medford, A. T. Destree, V. Mahdavi, and B. Nadal-Ginard. 1985. Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41:67–82.
  • Collins, J. H., G. P. Cote, and E. D. Korn. 1982. Localization of the three phosphorylation sites on each heavy chain of Acanthamoeba myosin II to a segment at the end of the tail. J. Biol. Chem. 257:4529–4534.
  • Cooper, T. A., and C. P. Ordahl. 1985. A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J. Biol. Chem. 260:11140–11148.
  • Crossley, A. C. 1978. The morphology and development of the Drosophila muscular system, p. 499–560. In M. Ashburner and T. R. F. Wright (ed.), The genetics and biology of Drosophila, vol. 2b. Academic Press, Inc. (London), Ltd., London.
  • Deutscher, S. L., B. M. Bhat, M. H. Pursley, C. Cladaras, and W. S. M. Wold. 1985. Novel deletion mutants that enhance a distant upstream 5′ splice in the E3 transcription unit of adenovirus 2. Nucleic Acids Res. 13:5771–5787.
  • Dibb, N. J., D. M. Brown, J. Karn, D. G. Moerman, S. L. Bolten, and R. H. Waterston. 1985. Sequence analysis of mutations that affect the synthesis, assembly and enzymatic activity of the unc-54 myosin heavy chain of Caenorhabditis elegans. J. Mol. Biol. 183:543–551.
  • Falkenthal, S., V. P. Parker, and N. Davidson. 1985. Developmental variations in the splicing pattern of transcripts from the Drosophila gene encoding myosin alkali light chain result in different carboxyl-terminal amino acid sequences. Proc. Natl. Acad. Sci. USA 82:449–453.
  • Fitzgerald, M., and T. Shenk. 1981. The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260.
  • Fyrberg, E. A., B. J. Bond, N. D. Hershey, K. S. Mixter, and N. Davidson. 1981. The actin genes of Drosophila: protein coding regions are highly conserved but intron positions are not. Cell 24:107–116.
  • Fyrberg, E. A., K. L. Kindle, N. Davidson, and A. Sodja. 1980. The actin genes of Drosophila: a dispersed multigene family. Cell 19:365–378.
  • Harrington, W. F., and M. Rodgers. 1984. Myosin. Annu. Rev. Biochem. 53:35–73.
  • Hastings, K. E. M., and C. P. Emerson, Jr. 1982. cDNA clone analysis of six co-regulated mRNAs encoding skeletal muscle contractile proteins. Proc. Natl. Acad. Sci. USA 79:1553–1557.
  • Hayashi, K. 1980. A cloning vehicle suitable for strand separation. Gene 11:109–115.
  • Hayashi, T., R. B. Silver, W. Ip, M. L. Cayer, and D. S. Smith. 1977. Actin-myosin interaction. Self-assembly into a bipolar “contractile unit”. J. Mol. Biol. 111:159–171.
  • Hayashi, T., P. M. Wozniak, M. L. Cayer, and D. S. Smith. 1983. Actin-myosin interaction: the role of myosin in determining the actin pattern in self-assembled “hybrid” contractile units. Tissue & Cell 15:955–963.
  • Karn, J., S. Brenner, and L. Barnett. 1983. Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by introns. Proc. Natl. Acad. Sci. USA 80:4253–4257.
  • Kavinsky, C. J., P. K. Umeda, A. M. Sinha, M. Elzinga, S. W. Tong, R. Zak, S. Jakovcic, and M. Rabinowitz. 1983. Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle. I. DNA and derived amino acid sequences of light meromyosin. J. Biol. Chem. 258:5196–5205.
  • Keller, E. B., and W. A. Noon. 1985. Intron splicing: a conserved internal signal in introns of Drosophila pre-mRNAs. Nucleic Acids Res. 13:4971–4981.
  • Kiehart, D. P., D. A. Kaiser, and T. D. Pollard. 1984. Direct localization of monoclonal antibody-binding sites on Acanthamoeba myosin-II and inhibition of filament formation by antibodies that bind to specific sites on the myosin-II tail. J. Cell Biol. 99:1015–1023.
  • Kiehart, D. P., and T. D. Pollard. 1984. Stimulation of Acanthamoeba actomyosin ATPase activity by myosin-II polymerization. Nature (London) 308:864–866.
  • Konarska, M. M., P. J. Grabowski, R. A. Padgett, and P. A. Sharp. 1985. Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature (London) 313:552–557.
  • Kuczmarski, E. R., and J. A. Spudich. 1980. Regulation of myosin self-assembly: phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments. Proc. Natl. Acad. Sci. USA 77:7292–7296.
  • Leinwand, L. A., L. Saez, E. McNally, and B. Nadal-Ginard. 1983. Isolation and characterization of human myosin heavy chain genes. Proc. Natl. Acad. Sci. USA 80:3716–3720.
  • Lompre, A.-M., K. Schwartz, A. d'Albis, G. Lacombe, N. V. Thiem, and B. Swynghedauw. 1979. Myosin isozyme redistribution in chronic heart overload. Nature (London) 282:105–107.
  • Mahdavi, V., M. Periasamy, and B. Nadal-Ginard. 1982. Molecular characterization of two myosin heavy chain genes expressed in the adult heart. Nature (London) 297:659–664.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • McLachlan, A. D., and J. Karn. 1982. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature (London) 299:226–231.
  • Miller, D. M., I. Ortiz, G. C. Berliner, and H. F. Epstein. 1983. Differential localization of two myosins within nematode thick filaments. Cell 34:477–190.
  • Mogami, K., and Y. Hotta. 1981. Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mol. Gen. Genet. 183:409–417.
  • Mogami, K., P. T. O'Donnell, S. I. Bernstein, T. R. F. Wright, and C. P. Emerson, Jr. 1986. Mutations of the Drosophila myosin heavy chain gene: effects on transcription, myosin accumulation and muscle function. Proc. Natl. Acad. Sci. USA 83:1393–1397.
  • Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472.
  • Nabeshima, Y., Y. Fujii-Kuriyama, M. Muramatsu, and K. Ogata. 1984. Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature (London) 308:333–338.
  • Nawa, H., H. Kotani, and S. Nakanishi. 1984. Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature (London) 312:729–734.
  • Nudel, U., D. Katcoff, Y. Carmon, D. Zevin-Sonkin, Z. Levi, Y. Shaul, M. Shani, and D. Yaffe. 1980. Identification of recombinant phages containing sequences from different rat myosin heavy chain genes. Nucleic Acids Res. 8:2133–2146.
  • Orkin, S. H., and S. C. Goff. 1981. The duplicated human α-globin genes: their relative expression as measured by RNA analysis. Cell 24:345–351.
  • Peltz, G., E. R. Kuczmarski, and J. A. Spudich. 1981. Dictyostelium myosin: characterization of chymotryptic fragments and localization of the heavy-chain phosphorylation site. J. Cell Biol. 89:104–108.
  • Poulson, D. F. 1950. Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster meigen, p. 168–274. In M. Demerec (ed.), Biology of Drosophila. John Wiley & Sons, Inc., New York.
  • Raghaven, K. V. 1981. Evidence for myosin heterogeneity in Drosophila melanogaster. Wilhelm Roux’ Arch. Entwick-lungsmech. Org. 190:297–300.
  • Robbins, J., G. A. Freyer, D. Chisholm, and T. C. Gilliam. 1982. Isolation of multiple genomic sequences coding for chicken myosin heavy chain protein. J. Biol. Chem. 257:549–556.
  • Rogers, J., P. Early, C. Carter, K. Calame, M. Bond, L. Hood, and R. Wall. 1980. Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobin chain. Cell 20:303–312.
  • Rosenfeld, M. G., S. G. Amara, and R. M. Evans. 1984. Alternative RNA processing: determining neuronal phenotype. Science 225:1315–1320.
  • Rozek, C. E., and N. Davidson. 1983. Drosophila has one myosin heavy chain gene with three developmentally regulated transcripts. Cell 32:23–34.
  • Rozek, C. E., and N. Davidson. 1986. Differential processing of RNA transcribed from the single-copy Drosophila myosin heavy chain gene produces four mRNAs that encode two polypeptides. Proc. Natl. Acad. Sci. USA 83:2128–2132.
  • Rubin, G. M., and A. C. Spradling. 1982. Genetic transformation of Drosophila using transposable element vectors. Science 218:348–353.
  • Ruskin, B., and M. R. Green. 1985. Role of the 3′ splice site consensus sequence in mammalian pre-mRNA splicing. Nature (London) 317:732–734.
  • Ruskin, B., A. R. Krainer, T. Maniatis, and M. R. Green. 1984. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38:317–331.
  • Sivaramakrishnan, M., and M. Burke. 1982. The free heavy chain of vertebrate skeletal myosin subfragment I shows full enzymatic activity. J. Biol. Chem. 257:1102–1105.
  • Solnick, D. 1985. Alternative splicing caused by RNA secondary structure. Cell 43:667–676.
  • Spradling, A. C., and G. M. Rubin. 1982. Transposition of cloned P elements into Drosophila germline chromosomes. Science 218:341–347.
  • Treisman, R., S. H. Orkin, and T. Maniatis. 1983. Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes. Nature (London) 302:591–596.
  • Turner, P. 1985. Controlling role for snurps. Nature (London) 316:105–106.
  • Umeda, P. K., C. J. Kavinsky, A. M. Sinha, H.-J. Hsu, S. Jakovcic, and M. Rabinowitz. 1983. Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle. II. Expression during development using SI nuclease mapping. J. Biol. Chem. 258:5206–5214.
  • Weydert, A., P. Daubas, M. Caravatti, A. Minty, G. Bugaisky, A. Cohen, B. Robert, and M. Buckingham. 1983. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J. Biol. Chem. 258:13867–13874.
  • Winkelmann, D. A., S. Lowey, and J. L. Press. 1983. Monoclonal antibodies localize change on myosin heavy chain isozymes during avian myogenesis. Cell 34:295–306.
  • Wydro, R. M., H. T. Nguyen, R. M. Gubits, and B. Nadal-Ginard. 1983. Characterization of sarcomeric myosin heavy chain genes. J. Biol. Chem. 258:670–678.
  • Young, R. A., O. Hagenbuchle, and U. Schibler. 1981. A single mouse α-amylase gene specifies two different tissue-specific mRNAs. Cell 23:451–458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.