0
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Requirements for Accurate and Efficient mRNA 3′ end Cleavage and Polyadenylation of a Simian Virus 40 early pre-RNA In Vitro

&
Pages 495-503 | Received 12 Jul 1986, Accepted 25 Sep 1986, Published online: 31 Mar 2023

LITERATURE CITED

  • Berget, S. M. 1984. Are U4 small nuclear ribonucleoproteins involved in polyadenylation? Nature (London) 309:179–182.
  • Berk, A. J., and P. A. Sharp. 1978. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of Sl endonuclease digested hybrids. Proc. Natl. Acad. Sci. USA 75:1274–1278.
  • Birnstiel, M. L., M. Busslinger, and K. Strub. 1985. Transcription termination and 3′ processing: the end is in site. Cell 41:349–359.
  • Black, D. L., B. Chabot, and J. A. Steitz. 1985. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell 42:737–750.
  • Chabot, B., D. L. Black, D. M. LeMaster, and J. A. Steitz. The 3′ splice site of pre-messenger RNA is recognized by a small nuclear ribonucleoprotein. Science 230:1344–1349.
  • Conway, L., and M. P. Wickens. 1985. A sequence downstream of AAUAAA is required for formation of simian virus 40 late mRNA 3′ termini in frog oocytes. Proc. Natl. Acad. Sci. USA 829:3949–3953.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Edery, I., and N. Sonenberg. 1985. Cap-dependent RNA splicing in a HeLa nuclear extract. Proc. Natl. Acad. Sci. USA 82:7590–7594.
  • Fitzgerald, M., and T. Shenk. 1981. The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260.
  • Ford, J. P., and M.-T. Hsu. 1978. Transcription pattern of in vivo-labeled late simian virus 40 RNA: equimolar transcription beyond the mRNA 3′ terminus. J. Virol. 28:795–801.
  • Frayne, E. G., E. J. Leys, G. F. Crouse, A. G. Hook, and R. E. Kellems. 1984. Transcription of the mouse dihydrofolate reductase gene proceeds unabated through seven polyadenylation sites and terminates near a region of repeated DNA. Mol. Cell. Biol. 4:2921–2924.
  • Furneaux, H. M., K. K. Perkins, G. A. Freyer, J. Arenas, and J. Hurwitz. 1985. Isolation and characterization of two fractions from HeLa cells required for mRNA splicing in vitro. Proc. Natl. Acad. Sci. USA 82:4351–4355.
  • Gil, A., and N. J. Proudfoot. 1984. A sequence downstream of AAUAAA is required for rabbit β-globin mRNA 3′ end formation. Nature (London) 312:473–475.
  • Hart, R. P., M. A. McDevitt, and J. R. Nevins. 1985. Poly(A) site cleavage in a HeLa nuclear extract is dependent on downstream sequences. Cell 43:677–683.
  • Hashimoto, C., and J. A. Steitz. 1986. A small nuclear ribonucleoprotein associates with the AAUAAA polyadenylation signal in vitro. Cell 45:581–591.
  • Hernandez, N., and W. Keller. 1983. Splicing of in vitro synthesized messenger RNA precursor in HeLa cell extracts. Cell 35:89–99.
  • Higgs, D. R., S. E. Goodbourn, J. Lamb, and N. C. Proudfoot. 1983. α-Thalassemia caused by polyadenylation signal mutation. Nature (London) 306:398–400.
  • Jacob, S. T., and K. M. Rose. 1983. Poly(A) polymerase from eukaryotes, p. 135–157. In S. T. Jacob (ed.), Enzymes of nucleic acid synthesis and modification, vol. 2. CRC Press, Inc., Boca Raton, Fla.
  • Keller, W. 1984. The RNA lariat: a new ring to the splicing of mRNA precursors. Cell 39:423–425.
  • Konarska, M. M., R. A. Padgett, and P. A. Sharp. 1984. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38:731–736.
  • Kramer, A. R., and T. Maniatis. 1985. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42:725–736.
  • Kramer, A. R., T. Maniatis, B. Ruskin, and M. R. Green. 1984. Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36:993–1005.
  • Lewis, E. D., and J. L. Manley. 1986. Polyadenylation of an mRNA precursor can occur independently of transcription by RNA polymerase II in vivo. Proc. Natl. Acad. Sci. USA 83:8555–8559.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual, p. 113–114. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Manley, J. L. 1983. Accurate and specific polyadenylation of mRNA precursors in a soluble whole-cell lysate. Cell 33:595–605.
  • Manley, J. L., A. Fire, A. Cano, P. A. Sharp, and M. Gefter. 1980. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. USA 77:3855–3859.
  • Manley, J. L., P. A. Sharp, and M. L. Gefter. 1982. RNA synthesis in isolated nuclei: processing of the adenovirus 2 major late mRNA precursor in vitro. J. Mol. Biol. 159:581–600.
  • Manley, J. L., H. Yu, and L. Ryner. 1985. RNA sequence containing hexanucleotide AAUAAA directs efficient mRNA polyadenylation in vitro. Mol. Cell. Biol. 5:373–379.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • McDevitt, M. A., M. J. Imperiale, H. Ali, and J. R. Nevins. 1984. Requirement of a downstream sequence for generation of a poly(A) addition site. Cell 37:993–999.
  • McLauchlan, J., D. Gaffney, J. L. Whitton, and J. B. Clements. 1985. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Res. 13:1347–1368.
  • McMasters, G., and G. Carmichael. 1977. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 79:4385–4838.
  • Montell, C., E. F. Fisher, M. H. Caruthers, and A. J. Berk. 1983. Inhibition of cleavage but not polyadenylation by a point mutation in the mRNA 3′ consensus sequence AAUAAA. Nature (London) 305:600–605.
  • Moore, C. L., and P. A. Sharp. 1984. Site-specific polyadenylation in a cell-free reaction. Cell 36:581–591.
  • Moore, C. L., and P. A. Sharp. 1985. Accurate cleavage and polyadenylation of exogenous RNA substrate. Cell 41:845–855.
  • Mount, S. M., I. Pettersson, M. Hinterberger, A. Karmas, and J. A. Steitz. 1983. The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell 33:509–518.
  • Nevins, J. R., and J. E. Darnell, Jr. 1978. Steps in the processing of Ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell 15:1477–1487.
  • Noble, J. C. S., C. Prives, and J. L. Manley. 1986. In vitro splicing of simian virus 40 early premRNA. Nucleic Acids Res. 14:1219–1236.
  • Orkin, S. H., T.-C. Chen, S. E. Antonarkis, and H. H. Kazarian, Jr. 1985. Thalessemia due to a mutation in the cleavage-Polyadenylation signal of the human β-globin gene. EMBO J. 4:453–456.
  • Padgett, R. A., S. F. Hardy, and P. A. Sharp. 1983. Splicing of adenovirus RNA in a cell-free transcription system. Proc. Natl. Acad. Sci. USA 80:5230–5234.
  • Peebles, C. L., P. Gegenheimer, and J. Abelson. 1983. Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32:525–536.
  • Peebles, C. L., P. S. Perlman, K. L. Mecklenberg, M. L. Petrillo, J. H. Tabor, K. A. Jarrell, and H.-L. Cheng. 1986. A selfsplicing RNA excises an intron lariat. Cell 44:213–223.
  • Price, D. H., and C. S. Parker. 1984. The 3′ end of Drosophila histone H3 mRNA is produced by a processing activity in vitro. Cell 38:423–429.
  • Proudfoot, N. J., and G. G. Brownlee. 1976. 3′ non-coding region sequences in eukaryotic messenger RNA. Nature (London) 263:211–213.
  • Reddy, V. B., P. K. Ghosh, P. Lebowitz, M. Piatak, and S. M. Weissman. 1979. Simian virus 40 early mRNAs. I. Genomic localization of 3′ and 5′ termini and two major splices in mRNA from transformed and Iytically infected cells. J. Virol. 30:279–296.
  • Sadofsky, M., S. Connelly, J. L. Manley, and J. C. Alwine. 1985. Identification of a sequence element on the 3′ side of AAUAAA which is necessary for simian virus 40 late mRNA 3′ end processing. Mol. Cell. Biol. 5:2713–2719.
  • Salser, W., R. F. Gesteland, and A. Bolle. 1967. In vitro synthesis of bacteriophage lysozyme. Nature (London) 215:588–591.
  • Simonsen, C. C., and A. D. Levinson. 1983. Analysis of processing and polyadenylation signals of the hepatitis B virus surface antigen gene by using simian virus 40-hepatitis B virus chimeric plasmids. Mol. Cell. Biol. 3:2250–2258.
  • Strub, K., G. Galli, M. Busslinger, and M. L. Birnsteil. 1984. The cDNA sequences of the sea urchin U7 small nuclear RNA suggest specific contacts between histone mRNA precursor and U7 RNA during RNA processing. EMBO J. 3:2801–2807.
  • Tabor, C. W., and H. Tabor. 1984. Polyamines. Annu. Rev. Biochem. 53:749–790.
  • Tooze, J. (ed.). 1981 DNA tumor viruses, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Wickens, M., and P. Stephenson. 1984. Role of the conserved AAUAAA sequence: four point mutants prevent messenger RNA 3′ end formation. Science 226:1045–1051.
  • Woychik, R. P., R. H. Lyons, L. Post, and F. M. Rottman. 1984. Requirements for the 3′ flanking region of the bovine growth hormone gene for accurate polyadenylation. Proc. Natl. Acad. Sci. USA 81:3944–3948.
  • Zarkower, D., R. Stephenson, M. Sheets, and M. Wickens. 1986. The AAUAAA sequence is required both for cleavage and for polyadenyIation of simian virus 40 pre-mRNA in vitro. Mol. Cell. Biol. 6:2317–2323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.