2
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Yeast Pre-mRNA Splicing Requires a Minimum Distance between the 5′ Splice Site and the Internal Branch Acceptor Site

&
Pages 4010-4016 | Received 20 Apr 1987, Accepted 03 Aug 1987, Published online: 31 Mar 2023

LITERATURE CITED

  • Abelson, J. 1979. RNA processing and the intervening sequence problem. Annu. Rev. Biochem. 48:1035–1069.
  • Ammerer, G. 1983. Expression of genes in yeast using the ADCI promotor. Methods Enzymol. 101:192–201.
  • Astell, C. R., L. Ahistrom-Jonasson, M. Smith, K. Tatchell, K. A. Nasmyth, and B. D. Hall. 1981. The sequence of the DNAs coding for the mating-type loci of Saccharomyces cerevisiae. Cell 27:15–23.
  • Breathnach, R., and P. Chambon. 1981. Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50:349–383.
  • Brody, E., and J. Abelson. 1985. The “spliceosome”: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228:963–967.
  • Cellini, A., E. Felder, and J. J. Rossi. 1986. Yeast pre-messenger RNA splicing efficiency depends on critical spacing requirements between the branch point and 3′ splice site. EMBO J. 5:1023–1030.
  • Cellini, A., R. Parker, J. McMahon, C. Guthrie, and J. Rossi. 1986. Activation of a cryptic TACTAAC box in the Saccharomyces cerevisiae actin intron. Mol. Cell. Biol. 6:1571–1578.
  • Chen, E. Y., and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170.
  • Domdey, H., B. Apostol, R.-J. Lin, A. Newman, E. Brody, and J. Abelson. 1984. Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell 39:611–621.
  • Donahue, T. F., P. J. Farabaugh, and G. R. Fink. 1982. The nucleotide sequence of the HIS4 region of yeast. Gene 18:47–59.
  • Fouser, L. A., and J. D. Friesen. 1986. Mutations in a yeast intron demonstrate the importance of specific conserved nucleotides for the two stages of nuclear mRNA splicing. Cell 45: 81–93.
  • Gallwitz, D. 1982. Construction of a yeast actin gene intron deletion mutant that is defective in splicing and leads to the accumulation of precursor RNA in transformed yeast cells. Proc. Natl. Acad. Sci. USA 79:3493–3497.
  • Gallwitz, D., and I. Sures. 1980. Structure of a split yeast gene: complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae. Proc. NatI. Acad. Sci. USA 77: 2546–2550.
  • Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580.
  • Hiraoka, Y., T. Toda, and M. Yanagida. 1984. The NDA3 gene of fission yeast encodes β-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39:349–358.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kaufer, N. F., V. Simanis, and P. Nurse. 1985. Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature (London) 318: 78–80.
  • Langford, C. J., and D. Gallwitz. 1983. Evidence for an intron-contained seqtience required for the splicing of yeast RNA polymerase 11 transcripts. Cell 33:519–527.
  • Langford, C. J., F.-J. Klinz, C. Donath, and D. Gallwitz. 1984. Point mutations identify the conserved. intron-contained TACTAAC box as an essential splicing signal sequence in veast. Cell 36:645–653.
  • Leff, S. E., M. G. Rosenfeld, and R. M. Evans. 1986. Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annu. Rev. Biochem. 55:1091–1117.
  • Mandel, M., and A. Higa. 1970. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53:159–162.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Miller, A. M. 1984. The yeast MATal gene contains two introns. EMBO J. 3:1061–1065.
  • Newman, A. J., R.-J. Lin, S.-C. Cheng, and J. Abelson. 1985. Molecular consequences of specific intron mutations on yeast mRNA splicing in vivo and in vitro. Cell 42:335–344.
  • Newman, A. J., R. C. Ogden, and J. Abelson. 1983. tRNA gene transcription in yeast: effects of specified base substitutions in the intragenic promoter. Cell 35:117–125.
  • Ng, R., and J. Abelson. 1980. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77:3912–3916.
  • Padgett, R. A., P. J. Grabowski, M. M. Konarska, S. Seiler, and P. S. Sharp. 1986. Splicing of messenger RNA precursors. Annu. Rev. Biochem. 55:1119–1150.
  • Parker, R., and C. Guthrie. 1985. A point mutation in the conserved hexanucleotide at a yeast 5′ splice junction uncouples recognition. cleavage. and ligation. Cell 41:107–118.
  • Pikielnv, C. W., and M. Rosbash. 1985. mRNA splicing efficiency in yeast and the contribution of nonconserved sequences. Cell 41:119–126.
  • Pikielnv, C. W., J. L. Teem, and M. Rosbash. 1983. Evidence for the biochemical role of an internal sequence in yeast nuclear mRNA introns: implications for Ul RNA and metazoan mRNA splicing. Cell 34:395–403.
  • Rodriguez, J. R., C. W. Pikielny, and M. Rosbash. 1984. In vivo characterization of yeast mRNA processing intermediates. Cell 39:603–610.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory. Cold Spring Harbor. N.Y.
  • Sutcliffe, J. G. 1979. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43:77–90.
  • Teem, J. L., N. Abovich, N. F. Kaufer, W. F. Schwindinger, J. R. Warner, A. Levy, J. Woolford, R. J. Leer, M. C. C. van Raamsdonk-Duin, W. H. Mlager, R. J. Planta, L. Schultz, J. D. Friesen, H. Fried, and M. Rosbash. 1984. A comparison of yeast ribosomal protein gene DNA sequences. Nucleic Acids Res. 12:8295–8312.
  • Thomas, P. S. 1980. Hvbridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.
  • van Santen, V. L., and R. A. Spritz. 1985. mRNA precursor splicing in vivo: sequence requirements determined by deletion analysis of an intervening sequence. Proc. Nat]. Acad. Sci. USA 82:2885–2889.
  • Vijayraghavan, U., R. Parker, J. Tamm, Y. limura, J. Rossi, J. Abelson, and C. Guthrie. 1986. Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J. 5:1683–1695.
  • Wieringa, B., E. Hofer, and C. Weissmann. 1984. A minimal intron length but no specific internal sequence is required for splicing the large rabbit β-globin intron. Cell 37:915–925.
  • Zalkin, H., and C. Yanofsky. 1982. Yeast gene TRP5: structure, function, regulation. J. Biol. Chem. 257:1491–1500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.