20
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Patterns of Polyadenylation Site Selection in Gene Constructs Containing Multiple Polyadenylation Signals

&
Pages 4829-4839 | Received 16 May 1988, Accepted 04 Aug 1988, Published online: 31 Mar 2023

Literature Cited

  • Alt, F. W., A. L. W. Bothwell, M. Knapp, E. Siden, E. Mather, M. Koshland, and D. Baltimore. 1980. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chain is directed by mRNAs that differ at their 3′ ends. Cell 20:293-301.
  • Babich, A., L. T. Feldman, J. R. Nevins, J. E. Darnell, and C. Weinberger. 1983. Effect of adenovirus on metabolism of specific host mRNAs transport control and specific translational discrimination. Mol. Cell. Biol. 3:1212-1221.
  • Berk, A. J., and P. A. Sharp. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of SI endonuclease- digested hybrids. Cell 12:721-732.
  • Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1413-1423.
  • Cole, C. N., and G. M. Santangelo. 1983. Analysis in Cos-1 cells of processing and polyadenylation signals by using derivatives of the herpes simplex virus type 1 thymidine kinase gene. Mol. Cell. Biol. 3:267-279.
  • Cole, C. N., and T. P. Stacy. 1985. Identification of sequences in the herpes simplex virus thymidine kinase gene required for efficient processing and polyadenylation. Mol. Cell. Biol. 5:2104-2113.
  • Conway, L., and M. Wickens. 1985. A sequence downstream of A AU AAA is required for formation of simian virus 40 late mRNA 3′ termini in frog oocytes. Proc. Natl. Acad. Sci. USA 82:3949-3953.
  • Favaloro, J., R. Treissman, and R. Kamen. 1981. Transcription maps of polyoma virus-specific RNA: analysis by two dimensional nuclease SI gel mapping. Methods Enzymol. 65:718-749.
  • Fitzgerald, M., and T. Shenk. 1981. The sequence 5′-AAUAAA- 3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251-260.
  • Garger, S. J., O. M. Griffith, and L. K. Grill. 1983. Rapid purification of plasmid DNA by a single centrifugation in a two step cesium chloride-ethidium bromide gradient. Biochem. Biophys. Res. Commun. 117:835-842.
  • Gil, A., and N. J. Proudfoot. 1984. A sequence downstream of AAUAAA is required for rabbit beta-globin mRNA 3′-end formation. Nature (London) 312:473-474.
  • Gruss, P., and G. Khoury. 1981. Expression of simian virus 40-rat preproinsulin recombinant in monkey kidney cells: use of preproinsulin RNA processing signals. Proc. Natl. Acad. Sci. USA 78:133-137.
  • Hamer, D. H., and P. Leder. 1979. SV40 recombinants carrying a functional RNA splice junction and polyadenylation site from the chromosomal mouse beta-major globin gene. Cell 17:737-747.
  • Hart, R. P., M. A. McDevitt, H. Ali, and J. R. Nevins. 1985. Definition of essential sequences and functional equivalence of elements downstream of the adenovirus E2A and the simian virus 40 polyadenylation sites. Mol. Cell. Biol. 5:2975-2983.
  • Hart, R. P., M. A. McDevitt, and J. R. Nevins. 1985. Poly(A) site cleavage in a HeLa nuclear extract is dependent on downstream sequences. Cell 43:677-683.
  • Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cultures. J. Mol. Biol. 26:365-369.
  • Kemp, D. J., G. Morahan, A. F. Cowan, and A. W. Harris. 1983. Production of RNA for secreted immunoglobulin chains does not require transcription termination 5′ to the M exons. Nature (London) 301:84-86.
  • Lanoix, J., R. W. Tseng, and N. H. Acheson. 1986. Duplication of functional polyadenylation signals in polymavirus does not alter efficiency of polyadenylation or transcription termination. J. Virol. 58:733-742.
  • Leff, S. E., M. G. Rosenfeld, and R. M. Evans. 1986. Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annu. Rev. Biochem. 55:1091-1118.
  • Luthman, H., and G. Magnusson. 1983. High efficiency polyoma DNA transfection of chloroquine treated cells. Nucleic Acids Res. 11:1295-1308.
  • Mandel, M., and A. Higa. 1970. Calcium-dependent bacteriophage DNA interaction. J. Mol. Biol. 53:159-162.
  • Maniatis, T., A. Jeffrey, and D. G. Kleid. 1975. Nucleotide sequence of the rightward operator of phage lambda. Proc. Natl. Acad. Sci. USA 72:1184-1188.
  • Mather, E. L., K. J. Nelson, J. Haimovich, and R. P. Perry. 1984. Mode of regulation of immunoglobulin mu and delta chain expression varies during B-lymphocyte maturation. Cell 36:329-338.
  • McLaughlan, J., D. Gaffney, J. L. Whitton, and J. B. Clements. 1985. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Res. 13:1347-1368.
  • Moore, C. L., and P. A. Sharp. 1984. Site-specific polyadenylation in a cell-free reaction. Cell 36:581-591.
  • Moore, C. L., and P. A. Sharp. 1985. Accurate cleavage and polyadenylation of exogenous RNA substrate. Cell 41:845-855.
  • Myers, R. M., D. C. Rio, A. K. Robbins, and R. Tjian. 1981. SV40 gene expression is modulated by the cooperative binding of T antigen to DNA. Cell 25:373-384.
  • Nevins, J. R., and M. C. Wilson. 1981. Regulation of adenovirus- 2 gene expression at the level of transcription termination and RNA processing. Nature (London) 290:113-119.
  • Nishikura, K., and G. A. Vuocolo. 1984. Synthesis of two mRNAs by utilization of alternate polyadenylation sites: expression of SV40-mouse immunoglobulin chain gene recombinants in Cos-1 monkey cells. EMBO J. 3:689-699.
  • Nussinov, R. 1986. Sequence signals which may be required for efficient formation of mRNA 3′ termini. Nucleic Acids Res. 14:3557-3571.
  • Peterson, M. L., and R. P. Perry. 1986. Regulation of production of |Uxm and U,s mRNA requires linkage of the poly (A) addition sites and is dependent on the length of the |Uxs-Up.m intron. Proc. Natl. Acad. Sci. USA 83:8883-8887.
  • Proudfoot, N. J., and G. G. Brownlee. 1976. 3′ noncoding region sequences in eukaryotic messenger RNA. Nature (London) 263:211-214.
  • Rogers, J., P. Early, C. Carter, K. Calame, M. Bond, L. Hood, and R. Wall. 1980. Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin p chain. Cell 20:99-106.
  • Rogers, J., N. Fasel, and R. Wall. 1985. A novel RNA in which the 5′ end is generated by cleavage at the poly(A) site of immunoglobulin heavy-chain secreted mRNA. Mol. Cell. Biol. 6:4749-4752.
  • Sadofsky, M., and J. C. Alwine. 1984. Sequences on the 3′ side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site. Mol. Cell. Biol. 4:1460-1468.
  • Sadofsky, M., S. Connelly, J. L. Manley, and J. C. Alwine. 1985. Identification of a sequence element on the 3′ side of AAUAAA which is necessary for simian virus 40 late mRNA 3′ end processing. Mol. Cell. Biol. 5:2713-2719.
  • Setzer, D. R., M. McGrogan, and R. T. Schimke. 1982. Nucleotide sequence surrounding multiple polyadenylation sites in mouse dihydrofolate reductase gene. J. Biol. Chem. 257:5143-5147.
  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-517.
  • White, R. T., P. Berg, and L. P. Villarreal. 1982. Simian virus 40-rabbit-globin recombinants lacking late mRNA splice sites express cytoplasmic RNAs with altered structures. J. Virol. 42:262-274.
  • Yen, J.-Y. J., and R. E. Kellems. 1987. Independent 5′- and 3′-end determination of multiple dihydrofolate reductase transcripts. Mol. Cell. Biol. 7:3732-3739.
  • Zhang, F., R. M. Denome, and C. N. Cole. 1986. Fine-structure analysis of the processing and polyadenylation region of the herpes simple virus type 1 thymidine kinase gene by using linker scanning, internal deletion, and insertion mutations. Mol. Cell. Biol. 6:4611-4623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.