2
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Transpositional Competence and Transcription of Endogenous Ty Elements in Saccharomyces cerevisiae: Implications for Regulation of Transposition

, &
Pages 3571-3581 | Received 21 Mar 1988, Accepted 07 Jun 1988, Published online: 31 Mar 2023

LITERATURE CITED

  • Boeke, J. D., D. Eichinger, D. Castrillon, and G. R. Fink. 1988. The yeast genome contains functional and nonfunctional copies of transposon Tyl. Mol. Cell. Biol. 8:1432–1442.
  • Boeke, J. D., D. J. Garfinkel, C. A. Styles, and G. R. Fink. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine 5′-phosphate decarboxylase activity in yeast:5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Boeke, J. D., C. A. Styles, and G. R. Fink. 1986. Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell. Biol. 6:3575–3581.
  • Boeke, J. D., H. Xu, and G. R. Fink. 1988. A general method for the chromosomal amplification of genes in yeast. Science 239:280–282.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of invertase. Cell 28:145–154.
  • Ciriacy, M., and V. W. Williamson. 1981. Analysis of mutations affecting Ty-mediated gene expression in Saccharomyces cere-visiae. Mol. Gen. Genet. 182:159–163.
  • Clare, J., and P. J. Farabaugh. 1985. Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc. Natl. Acad. Sci. USA 82:2828–2833.
  • Clark, D. J., V. W. Bilanchone, L. J. Haywood, S. L. Dildine, and S. B. Sandmeyer. 1988. A yeast composite element, Ty3, has properties of a retrotransposon. J. Biol. Chem. 263:1413–1423.
  • Dubois, E., E. Jacobs, and J.-C. Jauniaux. 1982. Expression of the ROAM mutations in Saccharomyces cerevisiae: involvement of trans-acting regulatory elements and relation with the Tyl transcription. EMBO J. 1:1133–1139.
  • Elder, R. T., T. P. St. John, D. T. Stinchcomb, and R. W. Davis. 1980. Studies on the transposable element Tyl of yeast. I. RNA homologous to Tyl. Cold Spring Harbor Symp. Quant. Biol. 45:581–584.
  • Errede, B., T. S. Cardillo, F. Sherman, E. Dubois, J. Deschamps, and J. M. Wiame. 1980. Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22:427–436.
  • Errede, B., M. Company, J. D. Ferchak, C. A. Hutchison, and W. S. Yarnell. 1985. Activation regions in a yeast transposon have homology to mating type control sequences and to mammalian enhancers. Proc. Natl. Acad. Sci. USA 82:5423–5427.
  • Errede, B., M. Company, and C. A. Hutchison. 1987. Tyl sequence with enhancer and mating-type-dependent regulatory activities. Mol. Cell. Biol. 7:258–265.
  • Farabaugh, P. J., and G. R. Fink. 1980. Insertion of the eukaryotic transposable element Tyl creates a 5-base pair duplication. Nature (London) 286:352–356.
  • Garfinkel, D. J., J. D. Boeke, and G. R. Fink. 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42:507–517.
  • Geliebter, J., R. A. Zeff, D. H. Schulze, L. R. Pease, E. H. Weiss, A. L. Mellor, R. A. Flavell, and S. G. Nathenson. 1986. Interaction between K(b) and Q4 gene sequences generates the K(bm6) mutation. Mol. Cell. Biol. 6:645–652.
  • Giroux, C. N., J. R. A. Mis, M. K. Pierce, S. E. Kohalmi, and B. A. Kunz. 1988. DNA sequence analysis of spontaneous mutations in the SUP4-0 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:978–981.
  • Guarente, L., R. R. Yocum, and P. Gifford. 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79:7410–7414.
  • Hartwell, L. H. 1980. Mutants of S. cerevisiae unresponsive to cell division control by polypeptide mating pheromone. J. Cell. Biol. 85:811–823.
  • Hauber, J., P. Nelbock-Hochstetter, and H. Feldman. 1985. Nucleotide sequence and characteristics of a Ty element from yeast. Nucleic Acids Res. 13:2745–2758.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Joyce, C. M., and N. D. F. Grindley. 1984. Methods for determining whether a gene of Escherichia coli is essential: application to the polA gene. J. Bacteriol. 158:636–643.
  • Kingsman, A. J., R. L. Gimlich, L. Clark, A. C. Chinault, and J. A. Carbon. 1981. Sequence variation in dispersed repetitive sequences in Saccharomyces cerevisiae. J. Mol. Biol. 145:619–632.
  • Klein, H. L., and T. D. Petes. 1984. Genetic mapping of Ty elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:329–339.
  • Liao, X.-B., J. J. Clare, and P. J. Farabaugh. 1987. The UAS site of a Ty2 element of yeast is necessary but not sufficient to promote maximal transcription of the element. Proc. Natl. Acad. Sci. USA 84:8520–8524.
  • Mellor, J., S. M. Fulton, M. J. Dobson, W. Wilson, S. M. Kingsman, and A. J. Kingsman. 1985. A retrovirus-like strategy for the expression of a fusion protein encoded by yeast transposon Tyl. Nature (London) 313:243–246.
  • Mortimer, R. K., and D. Schild. 1981. Genetic map of Saccharomyces cerevisiae, p. 641–652. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformations: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Paquin, C. E., and V. M. Williamson. 1984. Temperature effects of the rate of Ty transposition. Science 226:53–55.
  • Perkins, D. D. 1949. Biochemical mutants of the smut fungus, Ustilago maydis. Genetics 34:607–626.
  • Pure, G. A., G. W. Robinson, L. Naumovski, and E. C. Friedberg. 1985. Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNA (Gln) gene. J. Mol. Biol. 183:31–42.
  • Rathjen, P. D., A. J. Kingsman, and S. M. Kingsman. 1987. The yeast ROAM mutation—identification of the sequences mediating host gene activation and cell-type control in the yeast retrotransposon, Ty. Nucleic Acids Res. 15:7309–7324.
  • Roeder, G. S., P. J. Farabaugh, D. T. Chaleff, and G. R. Fink. 1980. The origin of gene instability in yeast. Science 209:1375–1380.
  • Roeder, G. S., and G. R. Fink. 1983. Transposable elements in yeast, p. 299–326. In J. S. Shapiro (ed.), Mobile genetic elements. Academic Press, New York.
  • Roeder, G. S., A. B. Rose, and R. E. Perlman. 1985. Transposable element sequences involved in the enhancement of yeast gene expression. Proc. Natl. Acad. Sci. USA 82:5428–5432.
  • Scherer, S., C. Mann, and R. W. Davis. 1982. Reversion of a promoter deletion in yeast. Nature (London) 298:815–819.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Simchen, G., F. Winston, C. A. Styles, and G. R. Fink. 1984. Ty-mediated expression of the L YS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81:2431–2434.
  • Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.
  • Toh, H., M. Ono, K. Saigo, and T. Miyata. 1985. Retroviral protease-like sequence in the yeast transposon Tyl. Nature (London) 315:691–692.
  • Toh-e, A., and Y. Sahashi. 1985. The PET18 locus of Saccharomyces cerevisiae: a complex locus containing multiple genes. Yeast 1:159–171.
  • Warmington, J. R., R. Anwar, C. S. Newlon, R. B. Waring, R. W. Davies, K. J. Indge, and S. G. Oliver. 1986. A "hot-spot" for Ty transposition on the left arm of yeast chromosome III. Nucleic Acids Res. 14:3475–3485.
  • Warmington, J. R., R. B. Waring, C. S. Newlon, K. J. Indge, and S. G. Oliver. 1985. Nucleotide sequence characterization of Ty 1-17, a class II transposon from yeast. Nucleic Acids Res. 13:6679–6693.
  • Williamson, V. M. 1983. Transposable elements in yeast. Int. Rev. Cytol. 83:1–25.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink. 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107:179–197.
  • Winston, F., F. Chumley, and G. R. Fink. 1983. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 101:211–228.
  • Winston, F., K. J. Durbin, and G. R. Fink. 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39:675–682.
  • Youngren, S. D., J. D. Boeke, N. J. Sanders, and D. J. Garfinkel. 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol. Cell. Biol. 8:1421–1431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.