0
Views
3
CrossRef citations to date
0
Altmetric
Gene Expression

Developmental Expression and 5S rRNA-Binding Activity of Xenopus laevis Ribosomal Protein L5

Pages 5281-5288 | Received 07 Jul 1989, Accepted 23 Aug 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Bandziulis, R. J., M. S. Swanson, and G. Dreyfuss. 1989. RNA-binding proteins as developmental regulators. Genes Dev. 3:431–437.
  • Baum, E. Z., L. E. Hyman, and W. M. Wormington. 1988. Post-translational control of ribosomal protein LI accumulation in Xenopus oocytes. Dev. Biol. 126:141–149.
  • Baum, E. Z., and W. M. Wormington. 1985. Coordinate expression of ribosomal protein genes during Xenopus development. Dev. Biol. 111:488–498.
  • Bisbee, C. A., M. A. Baker, A. C. Wilson, I. Hadji-Azimi, and M. Fischberg. 1977. Albumin phylogeny for clawed frogs (Xenopus). Science 195:785–787.
  • Brow, D. A., and E. P. Geiduschek. 1987. Modulation of yeast 5S rRNA synthesis in vitro by ribosomal protein YL3: a possible regulatory loop. J. Biol. Chem. 262:13953–13958.
  • Brown, D. D., and E. Littna. 1964. RNA synthesis during the development of Xenopus laevis, the South African clawed toad. J. Mol. Biol. 8:669–687.
  • Brown, D. D., and E. Littna. 1966. Synthesis and accumulation of low molecular weight RNA during embryogenesis of Xenopus laevis. J. Mol. Biol. 20:95–112.
  • Caizergues-Ferrer, M., P. Mariottini, C. Curie, B. Lapeyre, N. Gas, F. Amalric, and F. Amaldi. 1989. Nucleolin from Xenopus laevis: cDNA cloning and expression during development. Genes Dev. 3:324–333.
  • Cardinali, B., N. Campioni, and P. Pierandrei-Amaldi. 1987. Ribosomal protein, histone and calmodulin mRNAs are differently regulated at the translational level during oogenesis of Xenopus laevis. Exp. Cell Res. 169:432–441.
  • Chan, Y.-L., A. Lin, J. McNally, and I. G. Wool. 1987. The primary structure of rat ribosomal protein L5: a comparison of the sequence of amino acids in the proteins that interact with 5S rRNA. J. Biol. Chem. 262:12879–12886.
  • Dumont, J. N.. 1972. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136:153–180.
  • England, T. E., A. G. Bruce, and O. C. Uhlenbeck. 1984. Specific labeling of 3′ termini of RNA with T4 RNA ligase. Methods Enzymol. 65:65–74.
  • Ginsberg, A. M., B. O. King, and R. G. Roeder. 1984. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 39:479–489.
  • Gorenstein, C., and J. R. Warner. 1976. Coordinate regulation of the synthesis of eukaryotic ribosomal proteins. Proc. Natl. Acad. Sci. USA 73:1547–1551.
  • Gurdon, J. B.. 1976. Injected nuclei in frog oocytes: fate enlargement and chromatin dispersal. J. Embryol. Exp. Morphol. 36:523–540.
  • Huber, P. W., and I. G. Wool. 1984. Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease α-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. Proc. Natl. Acad. Sci. USA 81:322–326.
  • Huber, P. W., and I. G. Wool. 1986. Use of the cytotoxic nuclease α-sarcin to identify the binding site on eukaryotic 5S ribosomal ribonucleic acid for the ribosomal protein L5. J. Biol. Chem. 261:3002–3005.
  • Huber, P. W., and I. G. Wool. 1986. Identification of the binding site on 5S rRNA for the transcription factor IIIA: proposed structure of a common binding site on 5S rRNA and on the gene. Proc. Natl. Acad. Sci. USA 83:1593–1597.
  • Hyman, L. E., and W. M. Wormington. 1988. Translational inactivation of ribosomal protein mRNAs during Xenopus oocyte maturation. Genes Dev. 2:598–605.
  • Kintner, C. R., and D. A. Melton. 1987. Expression of Xenopus N-CAM RNA in ecotoderm is an early response to neural induction. Development 99:311–325.
  • Krieg, P. A., S. M. Vamum, W. M. Wormington, and D. A. Melton. 1989. The mRNA encoding elongation factor 1-α (EF-1α) is a major transcript at the midblastula transition in Xenopus. Dev. Biol. 133:93–100.
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Lastick, S. M., and E. H. McConkey. 1976. Exchange and stability of HeLa ribosomal proteins in vivo. J. Biol. Chem. 251:2867–2875.
  • Lerner, M. R., and J. A. Steitz. 1979. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 76:5495–5499.
  • Loreni, F., I. Ruberti, I. Bozzoni, P. Pierandrei-Amaldi, and F. Amaldi. 1985. Nucleotide sequences of the LI ribosomal protein gene in Xenopus laevis: remarkable sequence homology among introns. EMBO J. 4:3483–3488.
  • Mager, W. H.. 1988. Control of ribosomal protein gene expression. Biochim. Biophys. Acta 949:1–15.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Miller, L.. 1974. Metabolism of 5S RNA in the absence of ribosome production. Cell 3:275–281.
  • Nazar, R. N., M. Yaguchi, G. E. Willick, C. F. Rollin, and C. Roy. 1979. The 5-S RNA binding protein from yeast (Saccharomyes cerevisiae) ribosomes: evolution of the eukaryotic 5S RNA binding protein. Eur. J. Biochem. 102:573–582.
  • Nieuwkoop, P. D., and J. Faber. 1967. Normal tables of Xenopus laevis (Daudin). North-Holland Publishing Co., Amsterdam.
  • Pelham, H. R. B., and D. D. Brown. 1980. A specific transcription factor than can bind either the 5S RNA gene or 5S RNA. Proc. Natl. Acad. Sci. USA 77:4170–4174.
  • Phillips, W. F., and E. H. McConkey. 1976. Relative stoichiometry of ribosomal proteins in HeLa cell nucleoli. J. Biol. Chem. 251:2876–2881.
  • Picard, B., and M. Wegnez. 1979. Isolation of a 7S particle from Xenopus oocytes: a 5S RNA-protein complex. Proc. Natl. Acad. Sci. USA 76:241–245.
  • Pierandrei-Amaldi, P., E. Beccari, I. Bozzoni, and F. Amaldi. 1985. Ribosomal protein production in normal and anucleolate Xenopus embryos: regulation at the post-transcriptional and translational levels. Cell 42:317–323.
  • Pierandrei-Amaldi, P., N. Campioni, E. Beccari, I. Bozzoni, and F. Amaldi. 1982. Expression of ribosomal protein genes in Xenopus laevis development. Cell 30:163–171.
  • Query, C. C., R. C. Bentley, and J. D. Keene. 1989. A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57:89–101.
  • Romanczuk, H., and W. M. Wormington. 1989. Selective enhancement of bovine papillomavirus type 1 DNA replication in Xenopus laevis eggs by the E6 gene product. Mol. Cell. Biol. 9:406–414.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Steitz, J. A., C. Berg, J. P. Hendrick, H. La Branche-Chabot, A. Metspalu, J. Rinke, and T. Yario. 1988. A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells. J. Cell Biol. 106:545–556.
  • Woodland, H. R.. 1974. Changes in the polysome content of developing Xenopus laevis embryos. Dev. Biol. 40:90–101.
  • Wormington, W. M.. 1986. Stable repression of ribosomal protein LI synthesis in Xenopus oocytes by microinjection of antisense RNA. Proc. Natl. Acad. Sci. USA 83:8639–8643.
  • Wormington, W. M.. 1988. Expression of ribosomal protein genes during Xenopus development, p. 227–240. In L. E. Browder (ed.), Developmental biology: a comprehensive synthesis, vol. 5. Plenum Publishing Corp., New York.
  • Wormington, W. M., and D. D. Brown. 1983. Onset of 5S RNA gene regulation during Xenopus embryogenesis. Dev. Biol. 99:248–257.
  • Yaguchi, M., C. F. Rollin, C. Roy, and R. N. Nazar. 1984. The 5S RNA binding protein from yeast (Saccharomyces cerevisiae) ribosomes: an RNA binding sequence in the carboxyl-terminal region. Eur. J. Biochem. 139:451–457.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.