6
Views
3
CrossRef citations to date
0
Altmetric
Gene Expression

Isolation and Characterization of Mutations in the HXK2 Gene of Saccharomyces cerevisiae

, , , &
Pages 5630-5642 | Received 16 Mar 1989, Accepted 11 Aug 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Alber, T., M. G. Grutter, T. M. Gray, J. A. Wozniak, L. H. Weaver, B.-L. Chen, E. N. Baker, and B. W. Matthews. 1986. Structure and stability of mutant lysozymes from bacteriophage T4. UCLA Symp. Mol. Cell. Biol. New Ser. 39:307–318.
  • Alber, T., D. Sun, J. A. Nye, D. C. Muchmore, and B. W. Matthews. 1987. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry 26:3754–3758.
  • Alber, T., D. Sun, K. Wilson, J. A. Wozniak, S. P. Cook, and B. W. Matthews. 1987. Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature (London) 330:41–46.
  • Anderson, C. M., R. C. McDonald, and T. A. Steitz. 1978. Sequencing a protein by X-ray crystallography. I. Interpretation of yeast hexokinase B at 2.5 A resolution by model building. J. Mol. Biol. 123:1–13.
  • Anderson, C. M., R. E. Stenkamp, R. C. McDonald, and T. A. Steitz. 1978. A refined model of the sugar binding site of yeast hexokinase B. J. Mol. Biol. 123:207–219.
  • Anderson, C. M., R. E. Stenkamp, and T. A. Steitz. 1978. Sequencing a protein by X-ray crystallography. II. Refinement of yeast hexokinase B co-ordinates and sequence at 2.1 A resolution. J. Mol. Biol. 123:15–33.
  • Bennett, W. S., Jr., and T. A. Steitz. 1978. Glucose-induced conformational change in yeast hexokinase. Proc. Natl. Acad. Sci. USA 75:4848–4852.
  • Bennett, W. S., Jr., and T. A. Steitz. 1980. Structure of a complex between yeast hexokinase A and glucose. I. Structure determination and refinement at 3.5 A resolution. J. Mol. Biol. 140:183–209.
  • Bennett, W. S., Jr., and T. A. Steitz. 1980. Structure of a complex between yeast hexokinase A and glucose. II. Detailed comparison of conformation and active site configuration with the native hexokinase B monomer and dimer. J. Mol. Biol. 140:211–230.
  • Bergmeyer, H. U. (ed.). 1973. p. 473–474. Methods of enzymatic analysis, 2nd ed. Verlag Chemie, Weinheim, Federal Republic of Germany.
  • Borders, C. L., Jr., K. L. Cipollo, J. F. Jorkasky, and K. E. Neet. 1978. Role of arginyl residues in yeast hexokinase PII. Biochemistry 17:2654–2658.
  • Botstein, D., S. C. Falco, S. Stewart, M. Brennan, S. Sherer, D. Stinchcomb, K. Struhl, and R. W. Davis. 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Boyer, H. W., and D. Roulland-Dussoix. 1969. A complementation analysis of the restriction and modification of DNA in E. coli. J. Mol. Biol. 41:458–472.
  • Broach, J. R.. 1983. Construction of high copy yeast vectors using 2-μιη circle sequences. Methods Enzymol. 101:307–325.
  • Burnette, W. N.. 1981. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacryla- mide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112:195–203.
  • Carlson, M., B. C. Osmond, and D. Botstein. 1981. Mutants of yeast defective in sucrose utilization. Genetics 98:25–40.
  • CoIowick, S. P.. 1973. The hexokinases, p. 1–48. In P. D. Boyer (ed.), The enzymes, 3rd ed., vol. 9. Academic Press, Inc., New York.
  • Cox, E. C., and D. L. Homer. 1982. Dominant mutators in Escherichia coli. Genetics 100:7–18.
  • Degnen, G. E., and E. C. Cox. 1974. Conditional mutator gene in Escherichia coli: isolation, mapping and effector studies. J. Bacteriol. 117:477–487.
  • Derechin, M., A. Ramel, N. R. Lazarus, and E. A. Barnard. 1966. Yeast hexokinase. II. Molecular weight and dissociation behavior. Biochemistry 5:4017–4025.
  • Derechin, M., Y. M. Rustum, and E. A. Barnard. 1972. Dissociation of yeast hexokinase under the influence of substrate. Biochemistry 11:1793–1797.
  • Easterby, J. S., and M. A. Rosemeyer. 1972. Purification and subunit interactions of yeast hexokinase. Eur. J. Biochem. 28:241–252.
  • Entian, K.-D.. 1980. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in catabolite repression in yeast. Mol. Gen. Genet. 178:633–637.
  • Entian, K.-D., and K.-U. Frohlich. 1984. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering catabolite repression. J. Bacteriol. 158:29–35.
  • Entian, K.-D., E. Kopetzki, K. U. Frohlich, and D. Mecke. 1984. Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeast. Mol. Gen. Genet. 198:50–54.
  • Fowler, R. G., G. E. Degnen, and E. C. Cox. 1974. Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol. Gen. Genet. 133:179–191.
  • Fraenkel, D. G.. 1986. Mutants in glucose metabolism. Annu. Rev. Biochem. 55:317–337.
  • Frohlich, K.-U., K.-D. Entian, and D. Mecke. 1984. Cloning and restriction analysis of the hexokinase PII gene of the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 194:144–148.
  • Frohlich, K.-U., K.-D. Entian, and D. Mecke. 1985. The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repression. Gene 36:105–111.
  • Goldstein, A., and J. O. Lampen. 1975. β-D-Fructofuranoside fructohydrolase from yeast. Methods Enzymol. 42C:504–511.
  • Grutter, M. G., T. M. Gray, L. H. Weaver, T. Alter, K. Wilson, and B. W. Matthews. 1987. Structural studies of mutants of the lysozyme of bacteriophage T4: the temperature-sensitive mutant protein Thr157→Ile. J. Mol. Biol. 197:315–329.
  • Grutter, M. G., R. B. Hawkes, and B. W. Matthews. 1979. Molecular basis of thermostability in the lysozyme from bacteriophage T4. Nature (London) 277:667–669.
  • Grutter, M. G., L. H. Weaver, T. M. Gray, and B. W. Matthews. 1983. Structure, function, and evolution of the lysozyme from bacteriophage T4, p. 356–360. In C. K. Matthews, E. M. Kutter, G. Mosig, and P. B. Berget (ed.), Bacteriophage T4. American Society for Microbiology, Washington, D.C.
  • Haltiner, M., T. Kempe, and R. Tjian. 1985. A novel strategy for constructing clustered point mutations. Nucleic Acids Res. 13:1015–1025.
  • Hecht, M. H., H. C. M. Nelson, and R. T. Sauer. 1983. Mutations in λ repressor's amino terminal domain: implications for protein stability and DNA binding. Proc. Natl. Acad. Sci. USA 80:2676–2680.
  • Hecht, N. H., J. M. Sturtevant, and R. T. Sauer. 1984. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage λ repressor. Proc. Natl. Acad. Sci. USA 81:5685–5689.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kopetzki, E., K.-D. Entian, and D. Mecke. 1985. Complete nucleotide sequence of the hexokinase PI gene (HXK1) of Saccharomyces cerevisiae. Gene 39:95–102.
  • Korneluk, R. G., F. Quan, and R. A. Gravel. 1985. Rapid and reliable dideoxy sequencing of double stranded DNA. Gene 64:317–323.
  • Kunes, S., H. Ma, K. Overbye, M. S. Fox, and D. Botstein. 1987. Fine structure recombinational analysis of cloned genes using yeast transformation. Genetics 115:73–81.
  • Kuo, C., and J. L. Campbell. 1983. Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Mol. Cell. Biol. 3:1730–1337.
  • Lobo, Z., and P. K. Maitra. 1977. Genetics of yeast hexokinases. Genetics 86:727–744.
  • Lobo, Z., and P. K. Maitra. 1977. Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 182:639–645.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Ma, H., L. M. Bloom, C. T. Walsh, and D. Botstein. 1989. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5643–5649.
  • Ma, H., and D. Botstein. 1986. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol. Cell. Biol. 6:4046–4052.
  • Ma, H., S. Kunes, P. J. Schatz, and D. Botstein. 1987. Plasmid construction by homologous recombination in yeast. Gene 58:201–216.
  • Maitra, P. K.. 1975. Glucokinase from yeast. Methods Enzymol. 42:25–30.
  • Maitra, P. K., and Z. Lobo. 1983. Genetics of yeast glucokinase. Genetics 105:501–515.
  • McDonald, R. C., T. A. Steitz, and D. M. Engelman. 1979. Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose-6-phosphate. Biochemistry 18:338–342.
  • Muratsubaki, H., and T. Katsume. 1979. Distribution of hexokinase isoenzymes depending on a carbon source in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 86:1030–1036.
  • Neff, N. F., J. H. Thomas, P. Grisafi, and D. Botstein. 1983. Isolation of the β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33:211–219.
  • Nelson, H. C. M., and R. T. Sauer. 1986. Interaction of mutant λ repressors with operator and non-operator DNA. J. Mol. Biol. 192:27–38.
  • Otieno, S., A. K. Bhargava, D. Serelis, and E. A. Barnard. 1977. Evidence for a single essential thiol in the yeast hexokinase molecule. Biochemistry 16:4249–4255.
  • Pakula, A. A., V. B. Young, and R. T. Sauer. 1986. Bacteriophage λ cro mutations: effects on activity and intracellular degradation. Proc. Natl. Acad. Sci. USA 83:8829–8833.
  • Philips, M., D. B. Pho, and L.-A. Pradel. 1979. An essential arginyl residue in yeast hexokinase. Biochim. Biophys. Acta 566:296–304.
  • Pho, D. B., C. Roustan, A. N. T. Tot, and L.-A. Pradel. 1977. Evidence for an essential glutamyl residue in yeast hexokinase. Biochemistry 16:4533–4537.
  • Punch, D. L., H. J. Fromm, and F. B. Rudolph. 1973. The hexokinases: kinetic, physical, and regulatory properties. Adv. Enzymol. 39:249–326.
  • Rose, M., and D. Botstein. 1983. Structure and function of the yeast URA3 gene. Differentially regulated expression of hybrid β-galactosidase from overlapping coding sequences in yeast. J. Mol. Biol. 170:883–904.
  • Rose, M., P. Grisafi, and D. Botstein. 1984. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene 29:113–124.
  • Rose, M., and F. Winston. 1984. Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol. Gen. Genet. 193:557–560.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1978. Laboratory manual for a course, methods in yeast genetics, revised ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shortle, D., P. Grisafi, S. J. Benkovic, and D. Botstein. 1982. Gap misrepair mutagenesis: efficient site-directed induction of tran sition, trans version, and frameshift mutations in vitro. Proc. Natl. Acad. Sci. USA 79:1588–1592.
  • Stachelek, C., J. Stachelek, J. Swan, D. Botstein, and W. Konigsberg. 1986. Identification, cloning and sequence determination of genes specifying hexokinase A and B from yeast. Nucleic Acids Res. 14:945–963.
  • Steitz, T. A., W. F. Anderson, R. J. Fletterick, and C. M. Anderson. 1977. High resolution crystal structures of yeast hexokinase complexes with substrates, activators, and inhibitors. J. Biol. Chem. 252:4494–4500.
  • Struhl, K.. 1985. Naturally occurring poly (dA-dT) sequences are upstream promoter elements of constitutive transcription in yeast. Proc. Natl. Acad. Sci. USA 82:8419–8423.
  • Trayser, K. A., and S. P. Colowick. 1961. Properties of crystalline hexokinase from yeast. I. Analysis for possible co-factors. Arch. Biochem. Biophys. 94:156–160.
  • Trayser, K. A., and S. P. Colowick. 1961. Properties of crystalline hexokinase from yeast. II. Studies on ATP-enzyme interaction. Arch. Biochem. Biophys. 94:161–168.
  • Trayser, K. A., and S. P. Colowick. 1961. Properties of crystalline hexokinase from yeast. III. Studies on glucose-enzyme interaction. Arch. Biochem. Biophys. 94:169–176.
  • Viola, R. E., and W. W. Cleland. 1978. Use of pH studies to elucidate the chemical mechanism of yeast hexokinase. Biochemistry 17:4111–4117.
  • Zimmermann, F. K., and I. Scheel. 1977. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol. Gen. Genet. 154:75–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.