2
Views
25
CrossRef citations to date
0
Altmetric
Gene Expression

An Internal Regulatory Element Controls Troponin I Gene Expression

, &
Pages 1397-1405 | Received 07 Oct 1988, Accepted 02 Dec 1988, Published online: 31 Mar 2023

LITERATURE CITED

  • Arnold, H. H., E. Tannich, and B. M. Paterson. 1988. The promoter of the chicken cardiac myosin light chain 2 gene shows cell-specific expression in transfected primary cultures of chicken muscle. Nucleic Acids Res. 16:2411–2429.
  • Bader, D., T. Masaki, and D. A. Fischman. 1982. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95:763–770.
  • Baldwin, A. S., E. L. W. Kittler, and C. P. Emerson, Jr.. 1985. Structure, evolution, and regulation of a fast skeletal muscle troponin I gene. Proc. Natl. Acad. Sci. USA 82:8080–8084.
  • Bergsma, D. J., J. M. Grichnik, L. M. A. Gossett, and R. J. Schwartz. 1986. Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal α-actin gene. Mol. Cell. Biol. 6:2462–2475.
  • Blau, H. M., C.-P. Chiu, and C. Webster. 1983. Cytoplasmic activation of human nuclear genes in stable heterokaryons. Cell 32:1171–1180.
  • Bouvagnet, P. F., E. E. Strehler, G. E. White, M.-A. StrehlerPage, B. Nadal-Ginard, and V. Mahdavi. 1987. Multiple-positive and negative 5′ regulatory elements control the cell-type specific expression of the embryonic skeletal myosin heavy-chain gene. Mol. Cell. Biol. 7:4377–4389.
  • Bradford, M. M.. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Bucher, E. A., P. C. Maisonpierre, S. F. Konieczny, and C. P. Emerson, Jr.. 1988. Expression of the troponin complex genes: transcriptional coactivation during myoblast differentiation and independent control in heart and skeletal muscles. Mol. Cell. Biol. 8:4134–4142.
  • Chen, E., and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170.
  • Clegg, C. H., T. A. Linkhart, B. B. Olwin, and S. D. Hauschka. 1987. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in phase and is repressed by fibroblast growth factor. J. Cell Biol. 105:949–956.
  • Daubas, P., A. Klarsfeld, I. Garner, C. Pinset, R. Cox, and M. Buckingham. 1988. Functional activity of the two promoters of the myosin alkali light chain gene in primary muscle cell cultures: comparison with other muscle gene promoters and other culture systems. Nucleic Acids Res. 16:1251–1271.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Grichnik, J. M., B. J. Bergsma, and R. J. Schwartz. 1986. Tissue restricted and stage-specific transcription is maintained within 411 nucleotides flanking the 5′ end of the chicken α-skeletal actin gene. Nucleic Acids Res. 14:1683–1701.
  • Hallauer, P. L., and K. E. M. Hastings, and A. C. Peterson. 1988. Fast skeletal muscle-specific expression of a quail troponin I gene in transgenic mice. Mol. Cell. Biol. 8:5072–5079.
  • Hassell, J. A., C. R. Mueller, and W. J. Muller. 1985. The polyoma virus enhancer: multiple sequence elements required for transcription and DNA replication, p. 33–40. In Y. Gluzman (ed.), Eukaryotic transcription, the role of cis- and trans-acting elements in initiation. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Jaynes, J. B., J. S. Chamberlain, J. N. Buskin, J. E. Johnson, and S. D. Hauschka. 1986. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol. Cell. Biol. 6:2855–2864.
  • Klarsfeld, A., P. Daubas, B. Bourachot, and J. P. Changeux. 1987. A 5′-flanking region of the chicken acetylcholine receptor α-subunit gene confers tissue specificity and developmental control of expression in transfected cells. Mol. Cell. Biol. 7:951–955.
  • Konieczny, S. F., and C. P. Emerson, Jr.. 1984. 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell 38:791–800.
  • Konieczny, S. F., and C. P. Emerson, Jr.. 1985. Differentiation, not determination, regulates muscle gene activation: transfection of troponin I genes into multipotential and muscle lineages of 10T1/2 cells. Mol. Cell. Biol. 5:2423–2432.
  • Konieczny, S. F., and C. P. Emerson, Jr.. 1987. Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol. Cell. Biol. 7:3065–3075.
  • Lim, R. W., and S. D. Hauschka. 1984. A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro. J. Cell Biol. 98:739–749.
  • Maniatis, T., S. Goodbourn, and J. A. Fischer. 1987. Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245.
  • Mar, J. H., P. B. Antin, T. A. Cooper, and C. P. Ordahl. 1988. Analysis of the upstream regions governing expression of the chicken cardiac troponin T gene in embryonic cardiac and skeletal muscle cells. J. Cell Biol. 107:573–585.
  • Mar, J. H., and C. P. Ordahl. 1988. A conserved CATTCCT motif is required for skeletal muscle-specific activity of the cardiac troponin T gene promoter. Proc. Natl. Acad. Sci. USA 85:6404–6408.
  • Massagué, J., S. Cheifetz, T. Endo, and B. Nadal-Ginard. 1986. Type ß transforming growth factor is an inhibitor of myogenic differentiation. Proc. Natl. Acad. Sci. USA 83:8206–8210.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • McKnight, S. L., and R. Kingsbury. 1982. Transcriptional control signals of a eukaryotic protein-coding gene. Science 217:316–324.
  • Minty, A., H. Blau, and L. Kedes. 1986. Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors can accumulate before gene activation. Mol. Cell. Biol. 6:2137–2148.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Miwa, T., L. M. Boxer, and L. Kedes. 1987. CArG boxes in the human cardiac α-actin gene are core binding sites for positive trans-acting regulatory factors. Proc. Natl. Acad. Sci. USA 84:6702–6706.
  • Miwa, T., and L. Kedes. 1987. Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human α-cardiac actin gene. Mol. Cell. Biol. 7:2803–2813.
  • Nielsen, D. A., J. Chou, A. J. MacKrell, M. J. Casadaban, and D. F. Steiner. 1983. Expression of a preproinsulin-ß-galactosidase gene fusion in mammalian cells. Proc. Natl. Acad. Sci. USA 80:5198–5202.
  • Nordheim, A., and A. Rich. 1983. Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature (London) 303:674–679.
  • Phan-Dinh-Tuy, F., D. Tuil, F. Schweighoffer, C. Pinset, A. Kahn, and A. Minty. 1988. The ‘CC.Ar.GG’ box. A proteinbinding site common to transcription-regulatory regions of the cardiac actin, c-fos and interleukin-2 receptor genes. Eur. J. Biochem. 173:507–515.
  • Ptashne, M.. 1986. Gene regulation by proteins acting nearby and at a distance. Nature (London) 322:697–701.
  • Reitman, M., and G. Felsenfeld. 1988. Mutational analysis of the chicken ß-globin enhancer reveals two positive-acting domains. Proc. Natl. Acad. Sci. USA 85:6267–6271.
  • Serfling, E., M. Jasin, and W. Schaffner. 1985. Enhancers and eukaryotic gene transcription. Trends Genet. 1:224–230.
  • Shirakata, M., Y.-I. Nabeshima, K. Konishi, and Y. Fujii-Kuriyama. 1988. Upstream regulatory region for inducible expression of the chicken skeletal myosin alkali light-chain gene. Mol. Cell. Biol. 8:2581–2588.
  • Spizz, G., J.-S. Hu, and E. N. Olson. 1987. Inhibition of myogenic differentiation by fibroblast growth factor or type ß-transforming growth factor does not require persistent c-myc expression. Dev. Biol. 123:500–507.
  • Sternberg, E. A., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909.
  • Walsh, K., and P. Schimmel. 1988. DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells. Mol. Cell. Biol. 8:1800–1802.
  • Weiher, H., M. Konig, and P. Gruss. 1983. Multiple point mutations affecting the simian virus 40 enhancer. Science 219:626–631.
  • Yaffe, D.. 1968. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA 61:477–483.
  • Yaffe, D., and O. Saxel. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature (London) 270:725–727.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.