1
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Expression of Avian Ca2+-ATPase in Cultured Mouse Myogenic Cells

, &
Pages 1978-1986 | Received 07 Nov 1988, Accepted 07 Feb 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Allen, G., R. C. Bottomley, and B. J. Trinnaman. 1980. The primary structure of the calcium ion-transporting adenosine triphosphatase from rabbit skeletal sarcoplasmic reticulum. Some peptic, thermolytic, tryptic and staphylococcal-proteinase peptides. Biochem. J. 187:577–589.
  • Allen, G., B. J. Trinnaman, and N. M. Green. 1980. The primary structure of the calcium ion-transporting adenosine triphosphatase protein of rabbit skeletal sarcoplasmic reticulum. Peptides derived from digestion with cyanogen bromide, and the sequences of three long extramembranous segments. Biochem. J. 187:591–616.
  • Anderson, D. J., K. E. Mostov, and G. Blobel. 1983. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5. Proc. Natl. Acad. Sci. USA 80:7249–7253.
  • Blau, H., C.-P. Chiu, and C. Webster. 1983. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:1171–1180.
  • Brandi, C. J., S. de Leon, D. R. Martin, and D. H. MacLennan. 1987. Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J. Biol. Chem. 262:3768–3774.
  • Brandi, C. J., N. M. Green, B. Korczak, and D. H. MacLennan. 1986. Two Ca2+ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44:597–607.
  • Cerioti, A., and A. Colman. 1988. Binding to membrane proteins within the endoplasmic reticulum cannot explain the retention of the glucose-regulated protein GRP78 in Xenopus oocytes. EMBO J. 7:633–638.
  • Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299.
  • Clegg, C. H., T. A. Linkhart, B. B. Olwin, and S. D. Hauschka. 1987. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J. Cell Biol. 105:949–956.
  • Dente, L., G. Cesareni, and R. Cortese. 1983. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 11:1645–1655.
  • Devreotes, P. N., and D. M. Fambrough. 1975. Acetylcholine receptor turnover in membranes of developing muscle fibers. J. Cell Biol. 65:335–358.
  • Doyle, C., M. G. Roth, J. Sambrook, and M.-J. Gething. 1985. Mutations in the cytoplasmic domain of the influenza virus hemagglutinin affect different stages of intracellular transport. J. Cell Biol. 100:704–714.
  • Fambrough, D. M., and E. K. Bayne. 1983. Multiple forms of (Na++K+)-ATPase in the chicken. Selective detection of the major nerve, skeletal muscle, and kidney form by a monoclonal antibody. J. Biol. Chem. 258:3926–3935.
  • Gorman, C. M., L. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Graham, F. L., and A. J. van der Eb. 1973. A new method for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467.
  • Gubler, U., and B. J. Hoffman. 1983. A simple and very efficient method for generating cDNA libraries. Gene 25:263–269.
  • Heilman, K., C. Spamer, and W. Gerok. 1984. The calcium pump in rat liver endoplasmic reticulum. Demonstration of the phosphorylated intermediate. J. Biol. Chem. 259:11139–11144.
  • Huyhn, T. V., R. A. Young, and R. W. Davis. 1985. Constructing and screening cDNA libraries in λgt10 and λgt11, p. 49–78. In D. M. Glover (ed.), DNA cloning: a practical approach, vol. 1. IRL Press, Oxford.
  • Kaprielian, Z., and D. M. Fambrough. 1987. Expression of fast and slow isoforms of the Ca2+-ATPase in developing chick skeletal muscle. Dev. Biol. 124:490–503.
  • Kozak, M.. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292.
  • Kruh, J.. 1982. Effects of sodium butyrate, a new pharmacological agent on cells in culture. Mol. Cell. Biochem. 42:65–82.
  • Lippincott-Schwartz, J., and D. M. Fambrough. 1986. Lysosomal membrane dynamics: structure and interorganeller movement of a major lysosomal membrane glycoprotein. J. Cell Biol. 102:1593–1605.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • MacLennan, D. H., C. J. Brandi, B. Korczak, and N. M. Green. 1985. Amino-acid sequence of a Ca2+ +Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature (London) 316:696–700.
  • Martonosi, A. N., and T. J. Beeler. 1983. Skeletal muscle, p. 417–485. In L. D. Peachy, and R. H. Adrian (ed.), Handbook of physiology. American Physiological Society, Bethesda, Md.
  • Maruyama, K., and D. H. MacLennan. 1988. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc. Natl. Acad. Sci. USA 85:3314–3318.
  • Meissner, G.. 1975. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 241:356–378.
  • Mishina, M., T. Kurosaki, T. Tobimatsu, Y. Morimoto, M. Noda, T. Yamamoto, M. Terao, J. Lindstrom, T. Takahashi, M. Kuno, and S. Numa. 1984. Expression of functional acetylcholine receptor from cloned cDNAs. Nature (London) 307:604–608.
  • Mostov, K. E., P. DeFoor, S. Fleischer, and G. Blobel. 1981. Co-translational membrane integration of calcium pump protein without signal sequence cleavage. Nature (London) 292:87–88.
  • Munro, S., and H. R. B. Pelham. 1987. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907.
  • Paabo, S., B. M. Bhat, W. S. M. Wold, and P. A. Peterson. 1987. A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 50:311–317.
  • Pathak, R. K., K. L. Luskey, and R. G. W. Anderson. 1986. Biogenesis of the crystalloid endoplasmic reticulum in UT-1 cells: evidence that newly formed endoplasmic reticulum emerges from the nuclear envelope. J. Cell Biol. 102:2158–2168.
  • Pelham, H. R. B.. 1988. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 7:913–918.
  • Poruchynsky, M. S., C. Tyndall, G. W. Both, F. Sato, A. R. Bellamy, and P. H. Atkinson. 1985. Deletions into an NH2-terminal hydrophobic domain result in secretion of rotavirus VP7, a resident endoplasmic reticulum membrane glycoprotein. J. Cell Biol. 101:2199–2209.
  • Reithmeier, R. A. F., S. de Leon, and D. H. MacLennan. 1980. Assembly of the sarcoplasmic reticulum. Cell-free synthesis of the Ca2++Mg2+-adenosine triphosphatase and calsequestrin. J. Biol. Chem. 255:11839–11846.
  • Roman, L. M., and H. Garoff. 1986. Alteration of the cytoplasmic domain of the membrane-spanning glycoprotein p62 of Semliki forest virus does not affect its polar distribution in established lines of Madin-Darby canine kidney cells. J. Cell Biol. 103:2607–2618.
  • Rose, J. K., and J. E. Bergmann. 1983. Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein. Cell 34:513–524.
  • Sanger, J. W.. 1974. The use of cytochalasin B to distinguish myoblasts from fibroblasts in cultures of developing chick striated muscle. Proc. Natl. Acad. Sci. USA 71:3621–3625.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Simons, K., and H. Virta. 1987. Perforated MDCK cells support intracellular transport. EMBO J. 6:2241–2247.
  • Skalnik, D. G., H. Narita, C. Kent, and R. D. Simoni. 1988. The membrane domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto β-galactosidase. J. Biol. Chem. 263:6836–6841.
  • Southern, P., and P. Berg. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341.
  • Tabor, S., and C. C. Richardson. 1987. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84:4767–4771.
  • Takeyasu, K., M. M. Tamkun, K. J. Renaud, and D. M. Fambrough. 1988. Ouabain-sensitive (Na++K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding the α-subunit of an avian sodium pump. J. Biol. Chem. 263:4347–4354.
  • Takeyasu, K., M. M. Tamkun, N. R. Siegel, and D. M. Fambrough. 1987. Expression of hybrid (Na++K+)-ATPase molecules after transfection of mouse Ltk− cells with DNA encoding the β-subunit of an avian brain sodium pump. J. Biol. Chem. 262:10733–10740.
  • Terasaki, M., J. Song, J. R. Wong, M. J. Weiss, and L. B. Chen. 1984. Localization of endoplasmic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell 38:101–108.
  • Volpe, P., K.-H. Krause, S. Hashimoto, F. Zorzato, T. Pozzan, J. Meldolesi, and D. P. Lew. 1988. “Calciosome,” a cytoplasmic organelle: the inositol 1,4,5-triphosphate-sensitive Ca2+ store of nonmuscle cells? Proc. Natl. Acad. Sci. USA 85:1091–1095.
  • Wills, J. W., R. V. Srinivas, and E. Hunter. 1984. Mutations of the Rous sarcoma virus env gene that affect the transport and subcellular location of the glycoprotein products. J. Cell Biol. 99:2011–2023.
  • Yaffe, D., and O. Saxel. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature (London) 270:725–727.
  • Zubrzycka-Gaarn, E., G. MacDonald, L. Phillips, A. O. Jorgensen, and D. H. MacLennan. 1984. Monoclonal antibodies to the Ca2++Mg2+-dependent ATPase of sarcoplasmic reticulum identify polymorphic forms of the enzyme and indicate the presence in the enzyme of a classical high affinity Ca2+ binding site. J. Bioenerg. Biomembr. 16:441–464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.