1
Views
13
CrossRef citations to date
0
Altmetric
Gene Expression

Positive and Negative Regulation of Basal Expression of a Yeast HSP70 Gene

&
Pages 2025-2033 | Received 17 Nov 1988, Accepted 02 Feb 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761–3769.
  • Bienz, M., and H. R. B. Pelham. 1987. Mechanisms of heat-shock gene activation in higher eucaryotes. Adv. Genet. 24:31–71.
  • Bradford, M. M.. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Bram, R. J., and R. D. Kornberg. 1985. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc. Natl. Acad. Sci. USA 82:43–47.
  • Chen, E. J., and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method of sequencing plasmid DNA. DNA 4:165–170.
  • Chirico, W., G. Waters, and G. Blobel. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature (London) 332:805–810.
  • Cohen, R. C., T. Yokoi, J. P. Holland, A. E. Pepper, and M. J. Holland. 1987. Transcription of the constitutively expressed yeast enolase gene ENO1 is mediated by positive and negative cis-acting regulatory sequences. Mol. Cell. Biol. 7:2753–2761.
  • Craig, E. A., W. Boorstein, H.-O. Park, D. Stone, and C. Nicolet. 1989. Complex regulation of three heat-inducible HSP70-related genes in Saccharomyces cerevisiae, p. 51–61. In M. L. Pardue, J. R. Feramisco, and S. Lindquist (ed.), Stress-induced proteins. UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 96. Alan R. Liss, Inc., New York.
  • Craig, E. A., and K. Jacobsen. 1984. Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38:841–849.
  • Craig, E. A., and K. Jacobsen. 1985. Mutations in cognate genes of Saccharomyces cerevisiae hsp70 result in reduced growth rates at low temperatures. Mol. Cell. Biol. 5:3517–3524.
  • Craig, E. A., J. Kramer, and J. Kosic-Smithers. 1987. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84:4156–4160.
  • Deshaies, R. J., B. D. Koch, M. Werner-Washburne, E. A. Craig, and R. Schekman. 1988. A subfamily of stress protein facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature (London) 332:800–805.
  • Dudler, R., and A. Travers. 1984. Upstream elements necessary for optimal function of the hsp70 promoter in transformed flies. Cell 38:391–398.
  • Fried, M., and D. M. Crothers. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9:6506–6525.
  • Garner, M. M., and A. Rezvin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions. Nucleic Acids Res. 9:3047–3060.
  • Goodbourn, S., H. Burstein, and T. Maniatis. 1986. The human β-interferon gene enhancer is under negative control. Cell 45:601–610.
  • Guarente, L., and M. Ptashne. 1981. Fusion of Escherichia coli lacZ to the cytoplasmic c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 53:163–168.
  • Johnson, A. D., and I. Herskowitz. 1985. A repressor (MATα2 product) and its operator control expression of a set of cell type specific genes in yeast. Cell 42:237–247.
  • Kingston, R., T. Schuetz, and Z. Larin. 1987. Heat-inducible human factor that binds to a human hsp70 promoter. Mol. Cell. Biol. 7:1530–1534.
  • Kunkel, T., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-directed mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Larson, J. S., T. J. Schuetz, and R. E. Kingston. 1988. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature (London) 335:372–375.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Morgan, W., G. Williams, R. Morimoto, J. Greene, R. Kingston, and R. Tjian. 1987. Two transcriptional activators, CCAAT box-binding transcriptional factor and heat shock transcription factor, interact with a human hsp70 gene promoter. Mol. Cell. Biol. 7:1530–1534.
  • Parker, C. S., and J. Topol. 1984. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell 37:273–283.
  • Pelham, H. R. B.. 1982. A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell 30:517–528.
  • Pelham, H. R. B., and M. Bienz. 1982. A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J. 1:1473–1477.
  • Pfeifer, K., B. Arcangioli, and L. Guarente. 1987. Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene. Cell 49:9–18.
  • Sanger, F., A. R. Coulson, B. G. Bareli, A. J. H. Smith, and B. A. Rose. 1980. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143:161–178.
  • Slater, M. R., and E. A. Craig. 1987. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1906–1916.
  • Sorger, P. K., M. J. Lewis, and H. R. B. Pelham. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature (London) 329:81–84.
  • Sorger, P., and H. R. B. Pelham. 1987. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J. 6:3035–3041.
  • Sorger, P. K., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864.
  • Sumrada, R. A., and T. G. Cooper. 1985. Point mutation generates constitutive expression of an inducible eukaryotic gene. Proc. Natl. Acad. Sci. USA 82:643–647.
  • Sumrada, R. A., and T. G. Cooper. 1987. Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl. Acad. Sci. USA 84:3997–4001.
  • Topol, J., D. M. Ruden, and C. S. Parker. 1985. Sequences required for in vitro transcriptional activation of a Drosophila hsp70 gene. Cell 42:527–537.
  • Werner-Washburne, M., D. E. Stone, and E. A. Craig. 1987. Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:2568–2577.
  • Wiederrecht, G., D. Seto, and C. S. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853.
  • Wiederrecht, G., D. Shuey, W. A. Kibbe, and C. S. Parker. 1987. The Saccharomyces and Drosophila heat shock transcription factors are identical in size and DNA binding properties. Cell 48:507–515.
  • Wilson, K., and I. Herskowitz. 1984. Negative regulation of STE6 gene expression by the α2 product of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2420–2427.
  • Wu, C.. 1984. Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature (London) 309:229–234.
  • Wu, C.. 1984. Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature (London) 311:81–84.
  • Wu, C.. 1985. An exonuclease protection assay reveals heat-shock element and TATA box DNA-binding proteins in crude nuclear extracts. Nature (London) 317:84–87.
  • Wu, C., S. Wilson, B. Walker, I. Dawid, T. Paisley, V. Zimarino, and H. Ueda. 1987. Purification and properties of Drosophila heat shock activator protein. Science 238:1247–1253.
  • Zimarino, V., and C. Wu. 1987. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature (London) 327:727–730.
  • Zinn, K., and T. Maniatis. 1986. Detection of factors that interact with the human β-interferon regulatory region in vivo by DNAse I footprinting. Cell 45:611–618.
  • Zoller, M. J., and M. Smith. 1984. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3:479–488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.