3
Views
36
CrossRef citations to date
0
Altmetric
Gene Expression

The Upstream Muscle-Specific Enhancer of the Rat Muscle Creatine Kinase Gene Is Composed of Multiple Elements

&
Pages 2396-2413 | Received 12 Oct 1988, Accepted 22 Feb 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Arnold, H. H., E. Tannich, and B. M. Paterson. 1988. The promoter of the chicken cardiac myosin light chain 2 gene shows cell-specific expression in transfected primary cultures of chicken muscle. Nucleic Acids Res. 16:2411–2429.
  • Babiss, L. E., R. S. Herbst, A. L. Bennett, and J. E. Darnell, Jr.. 1987. Factors that interact with the rat albumin promoter are present both in hepatocytes and other cell types. Genes Dev. 1:256–267.
  • Becker, P. B., S. Ruppert, and G. Schutz. 1987. Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell 51:435–443.
  • Benfield, P. A., D. Graf, P. N. Korolkoff, G. Hobson, and M. L. Pearson. 1988. Isolation of four rat creatine kinase genes and identification of multiple promoter sequences within the rat brain creatine kinase promoter. Gene 63:227–243.
  • Bergsma, D. J., J. M. Grichnik, M. A. Gossett, and R. J. Schwartz. 1986. Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal α-actin gene. Mol. Cell. Biol. 6:2462–2475.
  • Blau, H. M., C. P. Chiu, and C. Webster. 1983. Cytoplasmic activation of human nuclear genes in stable heterokarvons. Cell 32:1171–1180.
  • Bouvagnet, P. F., E. E. Strehler, G. E. White, M.-A. StrehlerPage, B. Nadal-Ginard, and V. Mahdavi. 1987. Multiple positive and negative 5′ regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene. Mol. Cell. Biol. 7:4377–4389.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640.
  • Chamberlain, J. S., J. B. Jaynes, and S. D. Hauschka. 1985. Regulation of creatine kinase induction in differentiating mouse myoblasts. Mol. Cell. Biol. 5:484–492.
  • Chepelinsky, A. B., B. Sommer, and J. Piatigorsky. 1987. Interaction between two different regulatory elements activates the murine α-A crystallin gene promoter in explanted lens epithelia. Mol. Cell. Biol. 7:1807–1814.
  • Chiv, R., W. J. Boyle, J. Meek, T. Smeal, T. Hunter, and M. Karin. 1988. The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Mol. Cell. Biol. 54:541–552.
  • Chuvpilo, S. A., and V. V. Kravchenko. 1984. A simple and rapid method for sequencing DNA. FEBS Lett. 179:34–36.
  • Costa, R. H., E. Lai, and J. E. Darnell, Jr.. 1986. Transcriptional control of the mouse prealbumin (transthyretin) gene: both promoter sequences and a distinct enhancer are cell specific. Mol. Cell. Biol. 6:4697–4708.
  • Costa, R. H., E. Lai, D. R. Grayson, and J. E. Darnell, Jr.. 1988. The cell-specific enhancer of the mouse transthyretin (prealbumin) gene binds a common factor at one site and a liver-specific factor(s) at two other sites. Mol. Cell. Biol. 8:81–90.
  • Davidson, L., C. Fromental, P. Angereau, A. Wildeman, M. Zenke, and P. Chambon. 1986. Cell-type specific protein binding to the enhancer of simian virus 40 in nuclear extracts. Nature (London) 323:544–548.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Devlin, R. B., and C. P. Emerson. 1979. Coordinate accumulation of contractile protein mRNAs during myoblast differentiation. Dev. Biol. 69:202–216.
  • Dignam, J. D., R. M. Lebowitz, and R. G. Roeder. 1983. Accurate transcription initiation by polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Donoghue, M., H. Ernst, B. Wentworth, B. Nadal-Ginard, and N. Rosenthal. 1988. A muscle-specific enhancer is located at the 3′ end of the myosin light-chain 1/3 gene locus. Genes Dev. 2:1779–1790.
  • Ephrussi, A., G. M. Church, S. Tonegawa, and W. Gilbert. 1985. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140.
  • Ferguson, B., B. Krippl, O. Andrisani, N. Jones, H. Westphal, and M. Rosenberg. 1985. E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol. Cell. Biol. 5:2653–2661.
  • Garcia, T. A., F. K. Wu, R. Mitsuyasu, and R. B. Gaynor. 1987. Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO J. 6:3761–3770.
  • Gasser, S. M., and V. K. Laemmli. 1986. Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46:521–530.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gorski, K., M. Carniero, and U. Shibler. 1986. Tissue specific in vitro transcription from the mouse albumin promoter. Cell 47:767–776.
  • Graham, F. L., and A. J. van der Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:539–549.
  • Grayson, D. R., R. H. Costa, K. G. Xanthopoulos, and J. E. Darnell, Jr.. 1988. A cell-specific enhancer of the mouse α1- antitrypsin gene has multiple functional regions and corresponding protein-binding sites. Mol. Cell. Biol. 8:1055–1066.
  • Gunning, P., E. Hardeman, R. Wade, P. Ponte, W. Bains, H. M. Blau, and L. Kedes. 1987. Differential patterns of transcript accumulation during human myogenesis. Mol. Cell. Biol. 7:4100–4114.
  • Hammer, R. E., R. Krumlauf, S. A. Camper, R. L. Brinster, and S. M. Tilghman. 1987. Diversity of alpha-fetoprotein gene expression in mice is generated by a combination of separate enhancer elements. Science 235:53–58.
  • Hastings, K. E. M., and C. P. Emerson, Jr.. 1982. Gene sets in muscle development, p. 215–224. In M. L. Pearson, and H. F. Epstein (ed.), Muscle development: molecular and cellular control. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Herr, W., and J. Clarke. 1986. The SV40 enhancer is composed of multiple functional elements that compensate for one another. Cell 45:461–470.
  • Hobson, G. M., M. T. Mitchell, G. R. Molloy, M. L. Pearson, and P. A. Benfield. 1988. Identification of a novel TA-rich DNA binding protein that recognizes a TATA sequence within the brain creatine kinase promoter. Nucleic Acids Res. 16:8925–8945.
  • Hossle, J. P., J. Schlegel, G. Wegmann, M. Wyss, P. Bohlen, H. M. Eppenberger, T. Wallimann, and J.-C. Perriard. 1988. Distinct tissue specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem. Biophys. Res. Commun. 151:408–416.
  • Imagawa, M., R. Chiu, and M. Karin. 1987. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 51:251–260.
  • Jaynes, J. B., J. S. Chamberlain, J. N. Buskin, J. E. Johnson, and S. D. Hauschka. 1986. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol. Cell. Biol. 6:2855–2864.
  • Jaynes, J. B., J. E. Johnson, J. N. Buskin, C. L. Gartside, and S. D. Hauschka. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a musclespecific enhancer. Mol. Cell. Biol. 8:62–70.
  • Kaye, A. M., R. Hallowes, S. Cox, and M. Sluyser. 1986. Hormone-responsive creatine kinase in normal and neoplastic mammary glands. Ann. N.Y. Acad. Sci. 464:218–230.
  • Klarsfeld, A., P. Daubas, B. Bourschot, and J. P. Changeux. 1987. A 5′-flanking region of the chicken acetylcholine receptor α-subunit gene confers tissue specificity and developmental control of expression in transfected cells. Mol. Cell. Biol. 7:951–955.
  • Konieczny, S. F., and C. P. Emerson, Jr.. 1987. Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol. Cell. Biol. 7:3065–3075.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Markham, B. E., J. J. Bahl, T. A. Gustafson, and E. Morkin. 1987. Interaction of a protein factor with a thyroid hormonesensitive region of rat a-myosin heavy chain gene. J. Biol. Chem. 262:12856–12862.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Minty, A., H. Blau, and L. Kedes. 1986. Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors accumulate before gene activation. Mol. Cell. Biol. 6:2137–2148.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeat motif. Mol. Cell. Biol. 6:2125–2136.
  • Mitchell, P. J., C. Wang, and R. Tjian. 1987. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by T antigen. Cell 50:847–861.
  • Miwa, T., and L. Kedes. 1987. Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human cardiac a-actin gene. Mol. Cell. Biol. 7:2803–2813.
  • Muscat, G. E. O., and L. Kedes. 1987. Multiple 5′-flanking regions of the human α-skeletal actin gene synergistically modulate muscle-specific expression. Mol. Cell. Biol. 7:4089–4099.
  • Myers, R. M., K. Tilly, and T. Maniatis. 1986. Fine structure genetic analysis of a b-globin promoter. Science 232:613–618.
  • Nigro, J. M., C. W. Schweinfest, A. Rajkovic, J. Pavolicz, S. Tamal, R. P. Dottin, J. T. Hart, M. E. Kamarck, P. M. Rae, M. D. Carty, and P. Martin-DeLeon. 1987. cDNA cloning and mapping of the human creatine kinase M gene to 19q13. Am. J. Hum. Genet. 40:115–125.
  • Nudel, U., D. Melloui, V. Nakaar, R. Aft-Kenigsberg, D. Lederfine, and D. Yaffe. 1989. Regulatory elements in the 5′ flanking region of the rat skeletal muscle actin gene, p. 691–700. In L. H. Kedes, and F. E. Stockdale (ed.). Cellular and molecular biology of muscle development. Alan R. Liss, Inc., New York.
  • Paterson, B. M., and J. O. Bishop. 1977. Changes in the mRNA population of chick myoblasts during myogenesis in vitro. Cell 12:751–765.
  • Perriard, J.-C.. 1979. Developmental regulation of creatine kinase isoenzymes in myogenic cell culture from chicken. J. Biol. Chem. 254:7036–7041.
  • Perryman, M. B., J. D. Knell, J. Ifegwu, and R. Roberts. 1985. Identification of a 43-kDa polypeptide associated with acetylcholine receptor-enriched membranes as MM creatine kinase. J. Biol. Chem. 260:9399–9404.
  • Peterson, C. L., and K. Calame. 1987. Complex protein binding within the mouse immunoglobulin heavy-chain enhancer. Mol. Cell. Biol. 7:4194–4203.
  • Peterson, C. L., K. Orth, and K. L. Calame. 1986. Binding in vitro of multiple cellular proteins to immunoglobulin heavychain enhancer DNA. Mol. Cell. Biol. 6:4168–4178.
  • Picard, D., and W. Schaffner. 1985. A lymphocyte-specific enhancer in the mouse immunoglobulin K gene. Nature (London) 307:80–82.
  • Pinney, D. F., S. H. Pearson-White, S. F. Konieczny, K. E. Latham, and C. P. Emerson, Jr.. 1988. Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell 53:781–793.
  • Rauscher, F. J., III, L. C. Sambucetti, T. Curran, R. L. Distel, and B. M. Spiegelman. 1988. Common DNA binding site for protein complexes and transcription factor AP-1. Cell 52:471–480.
  • Reichel, R., I. Kovesdi, and J. R. Nevins. 1988. Activation of a preexisting cellular factor as a basis for adenovirus E1A- mediated transcription control. Proc. Natl. Acad. Sci. USA 85:387–390.
  • Reiss, N. A., and A. M. Kaye. 1981. Identification of the major component of the estrogen induced protein of rat uterus as the BB isozyme of creatine kinase. J. Biol. Chem. 256:5741–5749.
  • Sagami, I., S. Y. Tsai, H. Wang, M.-J. Tsai, and B. W. O'Malley. 1986. Identification of two factors required for transcription of the ovalbumin gene. Mol. Cell. Biol. 6:4259–4267.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schirm, S., J. Jiricny, and W. Schaffner. 1987. The SV40 enhancer can be dissected into multiple segments, each with a different cell type specificity. Genes Dev. 1:65–74.
  • Schlokat, U., D. Bohmann, H. Scholer, and P. Gruss. 1986. Nuclear factors binding specific sequences within the immunoglobulin enhancer interact differentially with other enhancer elements. EMBO J. 5:3251–3258.
  • Schuele, R., M. Muller, H. Otsuka-Murakami, and R. Renkawitz. 1988. Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor. Nature (London) 332:87–90.
  • Seiler-Tuyns, A., J. D. Eldridge, and B. M. Paterson. 1984. Expression and regulation of chicken actin genes introduced into mouse myogenic and non-myogenic cells. Proc. Natl. Acad. Sci. USA 81:2980–2984.
  • Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716.
  • Shapiro, D. J., P. A. Sharp, W. W. Wahl, and M. J. Keller. 1988. A high efficiency HeLa nuclear transcription extract. DNA 7:47–55.
  • Singh, H., R. Sen, D. Baltimore, and P. A. Sharp. 1986. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature (London) 319:154–158.
  • Solomon, M. J., F. Strauss, and A. Varshavsky. 1986. A mammalian high mobility group protein recognizes any stretch of size A-T base pairs in duplex DNA. Proc. Natl. Acad. Sci. USA 83:1276–1280.
  • Staudt, L. M., H. Singh, R. Sen, T. Wirth, P. A. Sharp, and D. Baltimore. 1986. A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature (London) 323:640–643.
  • Sternberg, E. A., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. A. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909.
  • Trask, R. V., A. W. Strauss, and J. J. Billadello. 1988. Developmental regulation and tissue-specific expression of the human creatine kinase gene. J. Biol. Chem. 263:17142–17149.
  • Urdal, P., K. Urdal, and J. H. Strømme. 1983. Cytoplasmic creatine kinase isoenzymes quantitated in tissue specimens obtained at surgery. Clin. Chem. 29:310–313.
  • Wallimann, T., G. Pelloni, D. C. Turner, and H. M. Eppenberger. 1978. Monovalent antibodies against MM creatine kinase remove the M line from myofibrils. Proc. Natl. Acad. Sci. USA 75:4296–4300.
  • Wallimann, T., G. Walzthöny, G. Wegmann, H. Moser, H. M. Eppenberger, and F. J. Barrantes. 1985. Subcellular localization of creatine kinase in torpedo electrocytes: association with acetyl choline receptor rich membranes. J. Cell. Biol. 100:1063–1072.
  • Walsh, K., and P. Schimmel. 1987. Two nuclear factors compete for the skeletal muscle actin promoter. J. Biol. Chem. 262:9429–9432.
  • Walsh, K., and P. Schimmel. 1988. DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells. Mol. Cell. Biol. 8:1800–1802.
  • Watts, D. C.. 1973. Creatine kinase (adenosine 5′-triphosphate- creatine phosphotransferase), p. 383–455. In P. D. Boyer (ed.). The enzymes, 3rd ed., vol. 8. Academic Press, Inc., New York.
  • Webster, K. A., Muscat, G. E. O., and L. Kedes. 1988. Adenovirus E1A products suppress myogenic differentiation and inhibit transcription from muscle-specific promoters. Nature (London) 332:553–557.
  • Yaffee, D., and O. Saxel. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature (London) 270:725–727.
  • Zenke, M., T. Grundstrom, H. Matthes, M. Wintzerith, C. Schatz, A. Wildeman, and P. Chambon. 1986. Multiple sequence motifs are involved in SV40 enhancer function. EMBO J. 5:387–397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.