1
Views
1
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Regulated Expression of Nuclear Protein(s) in Myogenic Cells- That Binds to a Conserved 3′ Untranslated Region in Proαl(I) Collagen cDNA

, , , &
Pages 2828-2836 | Received 30 Nov 1988, Accepted 29 Mar 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Aviv, H., and P. Leder. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc. Natl. Acad. Sci. USA 69:1408–1412.
  • Bernard, M. P., M.-L. Chu, J. C. Myers, F. Ramirez, E. F. Eikenberry, and D. J. Prockop. 1983. Nucleotide sequences of complementary deoxyribonucleic acids for the proα1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution. Biochemistry 22:5213–5223.
  • Buonanno, A., J. Mudd, V. Shah, and J. P. Merlie. 1986. A universal oligonucleotide probe for acetylcholine receptor genes. J. Biol. Chem. 261:16451–16458.
  • Carlin, B. E., J. C. Lawrence, Jr., J. M. Lindstrom, and J. P. Merlie. 1986. Inhibition of acetylcholine receptor assembly by activity in primary cultures of embryonic rat muscle cells. J. Biol. Chem. 261:5180–5186.
  • Chu, M.-L., W. de Wet, M. Bernard, and F. Ramirez. 1985. Fine structural analysis of the human proα1(I) collagen gene. J. Biol. Chem. 260:2315–2320.
  • Chu, M.-L., J. C. Myers, M. P. Bernard, J.-F. Ding, and F. Ramirez. 1982. Cloning and characterization of five overlapping cDNAs specific for the human proα1(I) collagen chain. Nucleic Acids Res. 10:5925–5934.
  • Cleveland, D. W.. 1988. Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism. Trends Biochem. Sci. 13:339–343.
  • De Ponti-Zilli, L., A. Seiler-Tuyns, and B. M. Paterson. 1988. A 40-base-pair sequence in the 3′ end of the β′ actin gene regulates β-actin mRNA transcription during myogenesis. Proc. Natl. Acad. Sci. USA 85:1389–1393.
  • Favoloro, J., R. Freisman, and R. Kamen. 1980. Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. Methods Enzymol. 65:718–749.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Garfinkel, L. I., M. Periasamy, and B. Nadal-Ginard. 1982. Cloning and characterization of cDNA sequences corresponding to myosin light chains 1, 2 and 3, troponin-C, troponin-T, α-tropomyosin, and α-actin. J. Biol. Chem. 257:11078–11086.
  • Garrels, J. I.. 1979. Changes in protein synthesis during myogenesis in a clonal cell line. Dev. Biol. 73:134–152.
  • Ginsberg, A. M., B. O. King, and R. G. Roeder. 1984. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 39:479–489.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gunning, P., T. Mohun, S.-Y. Ng, P. Ponte, and L. Kedes. 1984. Evolution of the human sarcomeric actin genes: evidence for unit of selection within the 3′ untranslated regions of the mRNAs. J. Mol. Evol. 20:202–214.
  • Herget, T., M. Reich, K. Stüber, and A. Starzinski-Powitz. 1986. Regulated expression of repetitive sequences including the identifier sequence during myotube formation in culture. EMBO J. 5:659–664.
  • Leegwater, P. A. J., P. C. van der Vliet, R. A. W. Rupp, J. Nowock, and A. E. Sippel. 1986. Functional homology between the sequence-specific DNA-binding proteins nuclear factor 1 from HeLa cells and the TGGCA protein from chicken liver. EMBO J. 5:381–386.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mar, J. H., and C. P. Ordahl. 1988. A conserved CATTCCT motif is required for skeletal muscle-specific activity of the cardiac troponin T gene promoter. Proc. Natl. Acad. Sci. USA 85:6404–6408.
  • Marie, J., M.-P. Simon, Y.-C. Lone, M. Cognet, and A. Kahn. 1987. Tissue-specific heterogeneity of the 3′ untranslated region of L-type pyruvate kinase mRNAs. Eur. J. Biochem. 158:33–41.
  • Maxam, A., and W. Gilbert. 1980. Sequencing end-labeled DNA with base specific chemical cleavages. Methods EnzymoL 65:499–525.
  • Miksicek, R., U. Borgmeyer, and J. Nowock. 1987. Interaction of the TGGCA-binding protein with upstream sequences is required for efficient transcription of mouse mammary tumor virus. EMBO J. 6:1355–1360.
  • Mooslehner, K., and K. Harbers. 1988. Two mRNAs of mouse proal(l) collagen gene differ in the size of the 3′-untranslated region. Nucleic Acids Res. 16:773.
  • Müllner, E. W., and L. C. Kühn. 1988. A stem loop in the 3′ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53:815–825.
  • Murphy, D., P. M. Brickell, D. S. Latchman, K. Willison, and P. W. J. Rigby. 1983. Transcripts regulated during normal embryonic development and oncogenic transformation share a repetitive element. Cell 35:865–871.
  • Nowock, J., and A. E. Sippel. 1982. Specific protein-DNA interaction at four sites flanking the chicken lysozyme gene. Cell 30:607–615.
  • Owen, D., and L. C. Kuehn. 1987. Noncoding 3′ sequences of the transferring receptor gene are required for mRNA regulation by iron. EMBO J. 6:1287–1293.
  • Pinset, C., and R. G. Whalen. 1985. Induction of myogenic differentiation in serum-free medium does not require DNA synthesis. Dev. Biol. 108:284–289.
  • Ponte, P., P. Gunning, H. Blau, and L. Kedes. 1982. Human actin genes are single copy for α-skeletal and α-cardiac actin but multicopy for β- and 7-cytoskeletal genes: 3′ untranslated regions are isotype specific but are conserved in evolution. Mol. Cell. Biol. 3:1783–1791.
  • Ponte, P., S. Ng, P. Engel, P. Gunning, and L. Kedes. 1984. Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human beta-actin cDNA. Nucleic Acids Res. 12:1687–1696.
  • Sakonju, S., and D. D. Brown. 1982. Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31:395–405.
  • Sanger, F., S. Nicklen, and A. R. Coulsen. 1977. DNA sequencing with chain-terminating inhibitors. J. Biol. Chem. 74:5463–5467.
  • Scott, M. R. D., K.-H. Westphal, and P. W. J. Rigby. 1983. Activation of mouse genes in transformed cells. Cell 34:557–567.
  • Shaw, G., and R. Kamen. 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667.
  • Singh, H., R. Sen, D. Baltimore, and P. A. Sharp. 1986. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature (London) 319:154–158.
  • Smith, D. R., I. J. Jackson, and D. Brown. 1984. Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell 37:645–652.
  • Thomas, P. S.. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.
  • Treisman, R.. 1985. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell 42:889–902.
  • Verma, I. M., J. Deschamps, C. Van Beveren, and P. SassoneCorsi. 1986. Human c-fos. Cold Spring Harbor Symp. Quant. Biol. 51:949–958.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.