4
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Functional Domains of the Drosophila melanogaster Muscle Myosin Heavy-Chain Gene Are Encoded by Alternatively Spliced Exons

, &
Pages 2957-2974 | Received 17 Jan 1989, Accepted 07 Apr 1989, Published online: 31 Mar 2023

LITERATURE CITED

  • Amara, S. G., V. Jonas, M. G. Rosenfeld, E. S. Ong, and R. M. Evans. 1982. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature (London) 298:240–244.
  • Aviv, H., and P. Leder. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc. Natl. Acad. Sci. USA 69:1408–1412.
  • Benton, W. D., and R. W. Davis. 1977. Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science 196:180–182.
  • Berk, A. J., and P. A. Sharp. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease digested hybrids. Cell 12:721–732.
  • Bernstein, S. L., C. J. Hansen, K. D. Becker, D. R. Wassenberg II, E. S. Roche, J. J. Donady, and C. P. Emerson, Jr.. 1986. Alternative RNA splicing generates transcripts encoding a thorax-specific isoform of Drosophila melanogaster myosin heavy chain. Mol. Cell. Biol. 6:2511–2519.
  • Bernstein, S. L., K. Mogami, J. J. Donady, and C. P. Emerson, Jr.. 1983. Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. Nature (London) 302:393–397.
  • Breathnach, R., and R. Chambon. 1981. Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50:349–383.
  • Breitbart, R. E., H. T. Nguyen, R. M. Medford, A. T. Destree, V. Mahdavi, and B. Nadal-Ginard. 1985. Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41:67–82.
  • Butler-Browne, G. S., and R. G. Whalen. 1984. Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Dev. Biol. 102:324–334.
  • Caplan, A. L., M. Y. Fiszman, and H. M. Eppenberger. 1983. Molecular and cell isoforms during development. Science 221:921–927.
  • Casey, J., and N. Davidson. 1977. Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide. Nucleic Acids Res. 4:1539–1552.
  • Chirgwin, J. M., A. E. Przybla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299.
  • Church, G. M., and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995.
  • Crossley, A. C.. 1978. The morphology and development of the Drosophila muscular system, p. 499–560. In M. Ashburner, and T. R. F. Wright (ed.), The genetics and biology of Drosophila. vol. 2b. Academic Press, Inc., New York.
  • Dente, L., G. Cesarini, and R. Cortese. 1983. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 11:1645–1655.
  • Dibb, N. J., D. M. Brown, J. Karn, D. G. Moerman, S. L. Bolten, and R. H. Waterston. 1985. Sequence analysis of mutations that affect the synthesis, assembly and enzymatic activity of the unc-54 myosin heavy chain of Caenorhahditis elegans. J. Mol. Biol. 183:543–551.
  • Dodgson, J. B., and J. D. Engel. 1983. The nucleotide sequence of the adult chicken α-globin genes. J. Biol. Chem. 258:4623–4629.
  • Emerson, C. P., Jr., and S. I. Bernstein. 1987. Molecular genetics of myosin. Annu. Rev. Biochem. 56:695–726.
  • Falkenthal, S., M. Graham, and J. Wilkinson. 1987. The indirect flight muscle of Drosophila accumulates a unique myosin alkali light chain isoform. Dev. Biol. 121:263–272.
  • Falkenthal, S., V. P. Parker, and N. Davidson. 1985. Developmental variations in the splicing pattern of transcripts from the Drosophila myosin alkali light chain gene result in different carboxyl-terminal amino acid sequences. Proc. Natl. Acad. Sci. USA 82:449–453.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Fyrberg, E. A., K. L. Kindle, N. Davidson, and A. Sodja. 1980. The actin genes of Drosophila: a dispersed multigene family. Cell 19:365–378.
  • Fyrberg, E. A., J. W. Mahaffey, B. J. Bond, and N. Davidson. 1983. Transcripts of the six Drosophila actin genes accumulate in a stage- and tissue-specific manner. Cell 33:115–123.
  • Garnier, J., D. J. Osguthorpe, and B. Robson. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120:97–120.
  • Gubler, U., and B. J. Hoffman. 1983. A simple and very efficient method for generating cDNA libraries. Gene 25:263–269.
  • Harrington, W. F., and M. Rogers. 1984. Myosin. Annu. Rev. Biochem. 53:35–73.
  • Hastings, K. E. M., E. A. Bucher, and C. P. Emerson, Jr.. 1985. Generation of troponin T isoforms by alternative RNA splicing in avian skeletal muscle. J. Biol. Chem. 260:13699–13703.
  • Helfman, D. M., S. Cheley, E. Kuismanen, L. A. Finn, and Y. Yamawaki-Kataoka. 1986. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol. Cell. Biol. 6:3582–3595.
  • Henikoff, S.. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359.
  • Huynh, T. V., R. A. Young, and R. W. Davis. 1985. Constructing and screening cDNA libraries in lambda gt10 and lambda gt11. p. 49–78. In D. M. Glover (ed.). DNA cloning, vol. 1. IRL Press, Washington, D.C.
  • Hynes, T. R., S. M. Block, B. T. White, and J. A. Spudich. 1987. Movement of myosin fragments in vitro: domains involved in force production. Cell 48:953–963.
  • Karlik, C. C., and E. A. Fyrberg. 1986. Two Drosophila melanogaster tropomyosin genes: structural and functional aspects. Mol. Cell. Biol. 6:1965–1973.
  • Karn, J., S. Brenner, and L. Barnett. 1983. Protein structural domains in the Caenorhahditis elegans unc-54 myosin heavy chain gene are not separated by introns. Proc. Natl. Acad. Sci. USA 80:4253–4257.
  • Kiehart, D. P., M. S. Lutz, D. Chan, A. S. Ketchum, R. A. Laymon, B. Nguyen, and L. S. B. Goldstein. 1989. Identification of the gene for fly non-muscle myosin heavy chain: Drosophila myosin heavy chains are encoded by a gene family. EMBO J. 8:913–922.
  • King, C. R., and J. Piatigorsky. 1983. Alternative RNA splicing of the murine αA-crystallin gene: protein-coding information within an intron. Cell 32:707–712.
  • Laski, F. A., D. C. Rio, and G. M. Rubin. 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44:7–19.
  • Leinwand, L. A., L. Saez, E. McNally, and B. Nadal-Ginard. 1983. Isolation and characterization of human myosin heavy chain genes. Proc. Natl. Acad. Sci. USA 80:3716–3720.
  • Linzer, D. I. H., and D. Nathans. 1983. Growth-related changes in specific mRNAs of cultured mouse cells. Proc. Natl. Acad. Sci. USA 80:4271–4275.
  • Lipman, D. J., and W. R. Pearson. 1985. Rapid and sensitive protein similarity searches. Science 227:1435–1441.
  • MacLeod, A. R., J. Karn, and S. Brenner. 1981. Molecular analysis of the unc-54 myosin heavy-chain gene of Caenorhab- ditis elegans. Nature (London) 291:386–390.
  • Mahdavi, V., M. Periasamy, and B. Nadal-Ginard. 1982. Molecular characterization of two myosin heavy chain genes expressed in the adult heart. Nature (London) 297:659–664.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Maniatis, T., R. C. Hardison, E. Lacy, J. Lauer, C. O'Connell, D. Quon, G. K. Sim, and A. Efstratiadis. 1978. The isolation of structural genes from libraries of eukaryotic DNA. Cell 15:687–701.
  • McLachlan, A. D.. 1984. Structural implications of the myosin amino acid sequence. Annu. Rev. Biophys. Bioeng. 13:167–189.
  • Medford, R. M., H. T. Nguyen, A. T. Destree, E. Summers, and B. Nadal-Ginard. 1984. A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene. Cell 38:409–421.
  • Miller, A.. 1950. The internal anatomy and histology of the imago of Drosophila melanogaster, p. 468–481. In M. Demerec (ed.), Biology of Drosophila. John Wiley & Sons, Inc., New York.
  • Miller, D. M., F. E. Stockdale, and J. Karn. 1986. Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 83:2305–2309.
  • Miller, D. M., III, I. Ortiz, G. C. Berliner, and H. F. Epstein. 1983. Differential localization of two myosins within nematode thick filaments. Cell 34:477–490.
  • Mitchell, E. J., R. Jakes, and J. Kendrick-Jones. 1986. Localisation of light chain and actin binding sites on myosin. Eur. J. Biochem. 161:25–35.
  • Mogami, K., P. T. O'Donnell, S. I. Bernstein, T. R. F. Wright, and C. P. Emerson, Jr.. 1986. Mutations of the Drosophila myosin heavy chain gene: effects on transcription, myosin accumulation, and muscle function. Proc. Natl. Acad. Sci. USA 83:1393–1397.
  • Molina, M. L., K. E. Kropp, J. Gulick, and J. Robbins. 1987. The sequence of an embryonic myosin heavy chain gene and isolation of its corresponding cDNA. J. Biol. Chem. 262:6478–6488.
  • Mount, S. M.. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472.
  • Nabeshima, Y., Y. Kurijama-Fujii, M. Muramatsu, and K. Ogata. 1984. Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature (London) 308:333–338.
  • Pearson-White, S. H., and C. P. Emerson, Jr.. 1987. A novel hybrid α-tropomyosin in fibroblasts is produced by alternative splicing of transcripts from the skeletal muscle α-tropomyosin gene. J. Biol. Chem. 202:15998–16010.
  • Periasamy, M., D. F. Wieczorek, and B. Nadal-Ginard. 1984. Characterization of a developmentally regulated perinatal myosin heavy-chain gene expressed in skeletal muscle. J. Biol. Chem. 259:13573–13578.
  • Periasamy, M., R. M. Wydro, M.-A. Strehler-Page, E. E. Strehler, and B. Nadal-Ginard. 1985. Characterization of cDNA and genomic sequences corresponding to an embryonic myosin heavy chain. J. Biol. Chem. 260:15856–15862.
  • Pringle, J. W. S.. 1967. The contractile mechanism of insect fibrillar muscle. Prog. Biophys. Mol. Biol. 17:1–60.
  • Robbins, J., G. A. Freiger, D. Chisholm, and T. C. Gilliam. 1982. Isolation of multiple genomic sequences coding for chicken myosin heavy chain protein. J. Biol. Chem. 257:549–556.
  • Rozek, C. E., and N. Davidson. 1983. Drosophila has one myosin heavy chain gene with three developmentally regulated transcripts. Cell 32:23–34.
  • Rozek, C. E., and N. Davidson. 1986. Differential processing of RNA transcribed from the single-copy Drosophila myosin heavy chain gene produces four mRNAs that encode two polypeptides. Proc. Natl. Acad. Sci. USA 83:2128–2132.
  • Rubin, G. M., and A. C. Spradling. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Sharp, P. A.. 1987. Splicing of messenger RNA precursors. Science 235:766–771.
  • Stockdale, F. E., and J. B. Miller. 1987. The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev. Biol. 123:1–91.
  • Strehler, E. E., M.-A. Strehler-Page, J.-C. Perriard, M. Periasamy, and B. Nadal-Ginard. 1981. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. J. Mol. Biol. 190:291–317.
  • Sutoh, K.. 1983. Mapping of actin binding sites on the heavy chain of myosin subfragment 1. Biochemistry 22:1579–1585.
  • Tong, S., and M. Elzinga. 1983. The sequence of the NH2- terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin. J. Biol. Chem. 258:13100–13110.
  • Toyoshima, Y. Y., S. J. Kron, E. M. McNally, K. R. Niebling, C. Toyoshima, and J. A. Spudich. 1987. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature (London) 328:536–539.
  • Ueno, H., and W. F. Harrington. 1986. The temperature-dependence of local melting in the myosin subfragment-2 region of the rigor cross-bridge. J. Mol. Biol. 190:59–68.
  • Ueno, H., and W. F. Harrington. 1986. Local melting in the subfragment-2 region of myosin in activated muscle and its correlation with contractile force. J. Mol. Biol. 190:69–82.
  • Wallace, R. B., M. Schold, M. J. Johnson, P. Dembek, and K. Itakura. 1981. Oligonucleotide directed mutagenesis of the human β-globin gene: a general method for producing specific point mutations in cloned DNA. Nucleic Acids Res. 9:3647–3656.
  • Warrick, H. M., and J. A. Spudich. 1987. Myosin structure and function in cell motility. Annu. Rev. Cell Biol. 3:379–421.
  • Wassenberg, D. R., H. W. A. Kronert, P. T. O'Donnell, and S. I. Bernstein. 1987. Analysis of the 5′-end of the Drosophila muscle myosin heavy chain gene. J. Biol. Chem. 262:10741–10747.
  • Wells, J. A., and R. G. Yount. 1982. Chemical modification of myosin by active-site trapping of metal nucleotides with thiol crosslinking reagents. Methods Enzymol. 85:93–115.
  • Weydert, A., P. Daubas, M. Caravatti, A. Minty, G. Bugaisky, A. Cohen, B. Robert, and M. Buckingham. 1983. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J. Biol. Chem. 258:13867–13874.
  • Wieczorek, D. F., M. Periasamy, G. S. Butler-Browne, R. G. Whalen, and B. Nadal-Ginard. 1985. Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J. Cell Biol. 101:618–629.
  • Wydro, R. M., H. T. Nguyen, R. M. Gubits, and B. Nadal-Ginard. 1983. Characterization of sarcomeric myosin heavy chain genes. J. Biol. Chem. 258:670–678.
  • Zoller, M. J., and M. Smith. 1982. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 10:6487–6500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.