0
Views
3
CrossRef citations to date
0
Altmetric
Original Papers

Transferrin Enhances Neuronal Differentiation

ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Article: 17590914231170703 | Received 12 Oct 2022, Accepted 31 Mar 2023, Published online: 16 Jul 2024

References

  • Adamo A. M., Paez P. M., Escobar Cabrera O. E., Wolfson M., Franco P. G., Pasquini J. M., Soto E. F. (2006). Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Experimental Neurology, 198(2), 519–529. https://doi.org/10.1016/j.expneurol.2005.12.027
  • Adler A. F., Cardoso T., Nolbrant S., Mattsson B., Hoban D. B., Jarl U., Wahlestedt J. N., Grealish S., Björklund A., Parmar M. (2019). hESC-derived dopaminergic transplants integrate into basal ganglia circuitry in a preclinical model of Parkinson’s disease. Cell Reports, 28(13), 3462–3473. https://doi.org/10.1016/j.celrep.2019.08.058
  • Arya R., White K. (2015). Cell death in development: Signaling pathways and core mechanisms. Seminars in Cell & Developmental Biology, 39, 12–19. https://doi.org/10.1016/j.semcdb.2015.02.001
  • Badaracco M. E., Ortiz E. H., Soto E. F., Connor J., Pasquini J. M. (2008). Effect of transferrin on hypomyelination induced by iron deficiency. Journal of Neuroscience Research, 86(12), 2663–2673. https://doi.org/10.1002/jnr.21709
  • Badaracco M. E., Siri M. V., Pasquini J. M. (2010). Oligodendrogenesis: The role of iron. Biofactors, 36(2), 98–102. https://doi.org/10.1002/biof.90
  • Barnes A. P., Polleux F. (2009). Establishment of axon-dendrite polarity in developing neurons. Annual Review of Neuroscience, 32, 347–381. https://doi.org/10.1146/annurev.neuro.31.060407.125536
  • Belovari T., Buliæ-Jakuš F., Juriæ-Lekiæ G., Mariæ S., Je’ek D., Vlahoviæ M. (2001). Differentiation of rat neural tissue in a serum-free embryo culture model followed by in vivo transplantation. Croatian Medical Journal, 42(6), 611–617. http://www.cmj.hr/2001/42/6/11740842.pdf
  • Bradbury M. W. (1997). Transport of iron in the blood-brain-cerebrospinal fluid system. Journal of Neurochemistry, 69(2), 443–454. https://doi.org/10.1046/j.1471-4159.1997.69020443.x
  • Brock J. H., Mainou-Fowler T., Webster L. M. (1986). Evidence that transferrin may function exclusively as an iron donor in promoting lymphocyte proliferation. Immunology, 57(1), 105–110.
  • Brunette K. E., Tran P. V., Wobken J. D., Carlson E. S., Georgieff M. K. (2010). Gestational and neonatal iron deficiency alters apical dendrite structure of CA1 pyramidal neurons in adult rat hippocampus. Developmental Neuroscience, 32(3), 238–248. https://doi.org/10.1159/000314341
  • Cam Y., Boukari A., Ruch J. V. (1989). Stimulatory effect of transferrin on the proliferation of embryonic mouse molar pre-odontoblasts and pre-ameloblasts in organ culture. Archives of Oral Biology, 34(3), 153–159. https://doi.org/10.1016/0003-9969(89)90002-2
  • Cameron B., Landreth G. E. (2010). Inflammation, microglia, and Alzheimer’s disease. Neurobiology of Disease, 37(3), 503–509. https://doi.org/10.1016/j.nbd.2009.10.006
  • Carden T. R., Correale J. D., Pasquini J. M., Pérez M. J. (2019). Transferrin enhances microglial phagocytic capacity. Molecular Neurobiology, 56, 6324–6340. https://doi.org/10.1007/s12035-019-1519-0
  • Casaccia-Bonnefil P., Aibel L., Chao M. V. (1996). Central glia and neuronal populations display differential sensitivity to ceramide-dependent cell death. Journal of Neuroscience Research, 43(3), 382–389. https://doi.org/10.1002/(SICI)1097-4547(19960201)43:3<382::AID-JNR13>3.0.CO;2-7
  • Chen J., Zacharek A., Cui X., Shehadah A., Jiang H., Roberts C., Lu M., Chopp M. (2010). Treatment of stroke with a synthetic liver X receptor agonist, TO901317, promotes synaptic plasticity and axonal regeneration in mice. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 30(1), 102–109. https://doi.org/10.1038/jcbfm.2009.187
  • Chen L., Feng P., Zhu X., He S., Duan J., Zhou D. (2016). Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells. Journal of Cellular and Molecular Medicine, 20(11), 2102–2110. https://doi.org/10.1111/jcmm.12904
  • Chen X., Fu W., Tung C. E., Ward N. L. (2009). Angiopoietin-1 induces neurite outgrowth of PC12 cells in a Tie2-independent, beta1-integrin-dependent manner. Neuroscience Research, 64(4), 348–354. https://doi.org/10.1016/j.neures.2009.04.007
  • Cowley S., Paterson H., Kemp P., Marshall C. J. (1994). Activation of MAP kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell, 77(6), 841–852. https://doi.org/10.1016/0092-8674(94)90133-3
  • de Arriba Zerpa G. A., Saleh M. C., Fernandez P. M., Guillou F., Espinosa de los Monteros A., de Vellis J., Zakin M. M., Baron B. (2000). Alternative splicing prevents transferrin secretion during differentiation of a human oligodendrocyte cell line. Journal of Neuroscience Research, 61(4), 388–395. https://doi.org/10.1002/1097-4547(20000815)61:4<388::AID-JNR5>3.0.CO;2-Q
  • de Faria O., Dhaunchak A. S., Kamen Y., Roth A., Kuhlmann T., Colman D. R., Kennedy T. (2019). TMEM10 promotes oligodendrocyte differentiation and is expressed by oligodendrocytes in human remyelinating multiple sclerosis plaques. Scientific Reports, 9(1), 3606. https://doi.org/10.1038/s41598-019-40342-x
  • De Gregorio-Rocasolano D., Martí-Sistac O., Ponce J., Castelló-Ruiz M., Millán M., Guirao V., García-Yébenes I., Salom J. B., Ramos-Cabrer P., Alborch E., Lizasoain I., Castillo J., Dávalos A., Gasull T. (2018). Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage. Redox Biology, 15, 143–158. https://doi.org/10.1016/j.redox.2017.11.026
  • Djeha A., Perez-Arellano J. L., Brock J. H. (1993). Transferrin synthesis by mouse lymph node and peritoneal macrophages: Iron content and effect on lymphocyte proliferation. Blood, 81(4), 1046–1050. https://doi.org/10.1182/blood.V81.4.1046.1046
  • Eagleson K. L., Lane C. J., Mcfadyen-Ketchum L., Solak S., Wu H. H., Levitt P. (2016). Distinct intracellular signaling mediates C-MET regulation of dendritic growth and synaptogenesis. Developmental Neurobiology, 76(10), 1160–1181. https://doi.org/10.1002/dneu.22382
  • English E. J., Mahn S. A., Marchese A. (2018). Endocytosis is required for CXC chemokine receptor type 4 (CXCR4)-mediated Akt activation and antiapoptotic signaling. Journal of Biological Chemistry, 293(29), 11470–11480. https://doi.org/10.1074/jbc.RA118.001872
  • Escobar Cabrera O. E., Bongarzone E. R., Soto E. F., Pasquini J. M. (1994). Single intracerebral injection of apotransferrin in young rats induces increased myelination. Developmental Neuroscience, 16(5-6), 248–254. https://doi.org/10.1159/000112116
  • Escobar Cabrera O. E., Zakin M. M., Soto E. F., Pasquini J. M. (1997). Single intracranial injection of apotransferrin in young rats increases the expression of specific myelin protein mRNA. Journal of Neuroscience Research, 47(6), 603–608. https://doi.org/10.1002/(SICI)1097-4547(19970315)47:6<603::AID-JNR5>3.0.CO;2-H
  • Espinosa de los Monteros A., Kumar S., Scully S., Cole R., de Vellis J. (1990). Transferrin gene expression and secretion by rat brain cells in vitro. Journal of Neuroscience Research, 25(4), 576–580. https://doi.org/10.1002/jnr.490250416
  • Espinosa de los Monteros A., Kumar S., Zhao P., Huang C. J., Nazarian R., Pan T., Scully S., Chang R., de Vellis J. (1999). Transferrin is an essential factor for myelination. Neurochemical Research, 24(2), 235–248. https://doi.org/10.1007/s11064-004-1826-2
  • Franco P. G., Pasquini L. A., Pérez M. J., Rosato-Siri M. V., Silvestroff L., Pasquini J. M. (2015). Paving the way for adequate myelination: The contribution of galectin-3,transferrin and iron. FEBS Letters, 589(2015), 3388–3395. https://doi.org/10.1016/j.febslet.2015.08.001
  • Garcia C. I., Paez P., Soto E. F., Pasquini J. M. (2003). Differential effects of apotransferrin on two populations of oligodendroglial cells. Glia, 42(4), 406–416. https://doi.org/10.1002/glia.10227
  • Giometto B., Bozza F., Argentiero V., Gallo P., Pagni S., Piccinno M. G., Tavolato B. (1990). Transferrin receptors in rat central nervous system. An immunocytochemical study. Journal of the Neurological Sciences, 98(1), 81–90. https://doi.org/10.1016/0022-510X(90)90183-N
  • Gkouvatsos K., Papanikolaou G., Pantopoulos K. (2012). Regulation of iron transport and the role of transferrin. Biochimicaetbiophysicaacta, 1820(3), 188–202. https://doi.org/10.1016/j.bbagen.2011.10.013
  • Guardia Clausi M., Paez P. M., Campagnoni A. T., Pasquini L. A., Pasquini J. M. (2012). Intranasal administration of aTf protects and repairs the neonatal white matter after a cerebral hypoxic-ischemic event. Glia, 60(10), 1540–1554. https://doi.org/10.1002/glia.22374
  • Guardia Clausi M., Pasquini L. A., Soto E. F., Pasquini J. M. (2010). Apotransferrin-induced recovery after hypoxic/ischaemic injury on myelination. ASN neuro, 2(5), e00048. https://doi.org/10.1042/an20100020
  • Hoyle C., Henderson D. J., Matthews D. J., Copp A. J. (1996). Transferrin and its receptor in the development of genetically determined neural tube defects in the mouse embryo. Developmental Dynamics, 207(1), 35–46. https://doi.org/10.1002/(SICI)1097-0177(199609)207:13.0.CO;2-X
  • Ji C., Kosman D. J. (2015). Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons. Journal of Neurochemistry, 133(5), 668–683. https://doi.org/10.1111/jnc.13040
  • Jorgenson L. A., Wobken J. D., Georgieff M. K. (2003). Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Developmental Neuroscience, 25(6), 412–420. https://doi.org/10.1159/000075667
  • Kelly B. T., Owen D. J. (2011). Endocytic sorting of transmembrane protein cargo. Current Opinion in Cell Biology, 23(4), 404–412. https://doi.org/10.1016/j.ceb.2011.03.004
  • Levina A., Pham T. H., Lay P. A. (2016). Binding of chromium(III) to transferrin could be involved in detoxification of dietary chromium(III) rather than transport of an essential trace element. AngewandteChemie (International ed in English), 55(28), 8104–8107. https://doi.org/10.1002/anie.201602996
  • Little D., Luft C., Mosaku O., Ketteler R., Devine M. J., Gissen P. (1994). High-content autophagy analysis in iPSC-derived neurons using immunofluorescence. Methods in Molecular Biology, 165–174. https://doi.org/10.1007/978-1-4939-9477-9_15
  • Liu D. J., Hammer D., Komlos D., Chen K. Y., Firestein B. L., Liu A. Y. (2014). SIRT1 Knockdown promotes neural differentiation and attenuates the heat shock response. Journal of Cellular Physiology, 229(9), 1224–1235. https://doi.org/10.1002/jcp.24556
  • Malecki E. A., Devenyi A. G., Beard J. L., Connor J. R. (1999). Existing and emerging mechanisms for transport of iron and manganese to the brain. Journal of Neuroscience Research, 56(2), 113–122. https://doi.org/10.1002/(SICI)1097-4547(19990415)56:2<113::AID-JNR1>3.0.CO;2-K
  • Marta C. B., Escobar Cabrera O. E., Garcia C. I., Villar M. J., Pasquini J. M., Soto E. F. (2000). Oligodendroglial cell differentiation in rat brain is accelerated by the intracranial injection of apotransferrin. Cellular and Molecular Biology (Noisy-le-Grand, France), 46(3), 529–539.
  • Marta C. B., Paez P., Lopez M., Pellegrino de Iraldi A., Soto E. F., Pasquini J. M. (2003). Morphological changes of myelin sheaths in rats intracranially injected with apotransferrin. Neurochemical Research, 28(1), 101–110. https://doi.org/10.1023/A:1021604413737
  • McCarthy K. D., de Vellis J. (1980). Preparation of separate astroglial and oligodendroglial. The Journal of Cell Biology, 85(3), 890–902. https://doi.org/10.1083/jcb.85.3.890
  • Ménager C., Nariko A., Yuko F., Kozo K. (2004). PIP3 is involved in neuronal polarization and axon formation. Journal of Neurochemistry, 89(1), 109–118. https://doi.org/10.1046/j.1471-4159.2004.02302.x
  • Mochizuki Y., Furukawa K. (1987). Application of coomassie brilliant blue staining to cultured hepatocytes. Cell Biology International Reports, 11(5), 367–371. https://doi.org/10.1016/0309-1651(87)90003-8
  • Moos T. (1996). Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system. The Journal of Comparative Neurology, 375(4), 675–692. https://doi.org/10.1002/(SICI)1096-9861(19961125)375:4&lt;675::AID-CNE8&gt;3.0.CO;2-Z
  • Moos T., Morgan E. H. (2000). Transferrin and transferrin receptor function in brain barrier systems. Cellular and Molecular Neurobiology, 20(1), 77–95. https://doi.org/10.1023/A:1006948027674
  • Moos T., Rosengren Nielsen T., Skjorringe T., Morgan E. H. (2007). Iron trafficking inside the brain. Journal of Neurochemistry, 103(5), 1730–1740. https://doi.org/10.1111/j.1471-4159.2007.04976.x
  • Morris C. M., Candy J. M., Keith A. B., Oakley A. E., Taylor G. A., Pullen R. G., Bloxham C. A., Gocht A., Edwardson J. A. (1992). Brain iron homeostasis. Journal of Inorganic Biochemistry, 47(3-4), 257–265. https://doi.org/10.1016/0162-0134(92)84071-T
  • Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Musa H., Veenstra R. D. (2003). Voltage-dependent blockade of connexin40 gap junctions by spermine. Biophysical Journal, 84(1), 205–219. https://doi.org/10.1016/s0006-3495(03)74843-7
  • Nakamura Y., Hashimoto R., Amano M., Nagata K., Matsumoto N., Goto H., Fukusho E., Mori H., Kashiwagi Y., Kudo T., Inagaki M., Takeda M. (2000). Localized phosphorylation of vimentin by rho-kinase in neuroblastoma N2a cells. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 5(10), 823–837. https://doi.org/10.1046/j.1365-2443.2000.00372.x
  • Olmsted J. B., Carlson K., Klebe R., Ruddle F., Rosenbaum J. (1970). Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proceedings of the National Academy of Sciences of the United States of America, 65(1), 129–136. https://doi.org/10.1073/pnas.65.1.129
  • Paez P. M., Garcia C. I., Davio C., Campagnoni A. T., Soto E. F., Pasquini J. M. (2004). Apotransferrin promotes the differentiation of two oligodendroglial cell lines. Glia, 46(2), 207–217. https://doi.org/10.1002/glia.20001
  • Paez P. M., Marta C. B., Moreno M. B., Soto E. F., Pasquini J. M. (2002). Apotransferrin decreases migration and enhances differentiation of oligodendroglial progenitor cells in an in vitro system. Developmental Neuroscience, 24(1), 47–58. https://doi.org/10.1159/000064945
  • Park M. J., Lee S. K., Lim M. A., Chung H. S., Cho S. I., Jang C. G., Lee S. M. (2006). Effect of alpha-tocopherol and deferoxamine on methamphetamine-induced neurotoxicity. Brain Research, 1109(1), 176–182. https://doi.org/10.1016/j.brainres.2006.06.030
  • Perez M. J., Fernandez N., Pasquini J. M. (2013). Oligodendrocyte differentiation and signaling after transferrin internalization: A mechanism of action. Experimental Neurology, 248, 262–274. https://doi.org/10.1016/j.expneurol.2013.06.014
  • Riemer J., Hoepken H. H., Czerwinska H., Robinson S. R., Dringen R. (2004). Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Analytical Biochemistry, 331(2), 370–375. https://doi.org/10.1016/j.ab.2004.03.049
  • Rosato-Siri M. V., Badaracco M. E., Ortiz E. H., Belforte N., Guardia Clausi M., Soto E. F., Bernabeu R., Pasquini J. M. (2010). Oligodendrogenesis in iron-deficient rats: Effect of apotransferrin. Journal of Neuroscience Research, 88, 1695–1707. https://doi.org/10.1002/jnr.22348
  • Rossi F., Cattaneo E. (2002). Neural stem cell therapy for neurological diseases: Dreams and reality. Nature Reviews Neuroscience, 3(5), 401–409. https://doi.org/10.1038/nrn809
  • Saleh M. C., Espinosa de los Monteros A., de Arriba Zerpa G. A., Fontaine I., Piaud O., Djordjijevic D., Baroukh N., Garcia Otin A. L., Ortiz E., Lewis S., Fiette L., Santambrogio P., Belzung C., Connor J. R., de Vellis J., Pasquini J. M., Zakin M. M., Baron B., Guillou F. (2003). Myelination and motor coordination are increased in transferrin transgenic mice. Journal of Neuroscience Research, 72(5), 587–594. https://doi.org/10.1002/jnr.10619
  • Sarina Yagi Y., Nakano O., Hashimoto T., Kimura K., Asakawa Y., Zhong M., Narimatsu S., Gohda E. (2013). Induction of neurite outgrowth in PC12 cells by artemisinin through activation of ERK and p38 MAPK signaling pathways. Brain Research, 1490, 61–71. https://doi.org/10.1016/j.brainres.2012.10.059
  • Shi S. H., Jan L. Y., Jan Y. N. (2003). Hippocampal neuronal polarity specified by spatially localized MPar3/MPar6 and PI 3-kinase activity. Cell, 112(1), 63–75. https://doi.org/10.1016/s0092-8674(02)01249-7
  • Sriramoju B., Kanwar R. K., Kanwar J. R. (2015). Lactoferrin induced neuronal differentiation: A boon for brain tumours. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 41, 28–36. https://doi.org/10.1016/j.ijdevneu.2014.12.005
  • Tsutsumi M., Skinner M. K., Sanders-Bush E. (1989). Transferrin gene expression and synthesis by cultured choroid plexus epithelial cells. Regulation by serotonin and cyclic adenosine 3′,5′-monophosphate. The Journal of Biological Chemistry, 264(16), 9626–9631. https://doi.org/10.1016/S0021-9258(18)60576-9
  • Waetzig V., Herdegen T. (2003). The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Molecular and Cellular Neurosciences, 24(1), 238–249. https://doi.org/10.1016/S1044-7431(03)00126-X
  • Wang J., Wang J., Song W., Yang X., Zong W., Liu R. (2016). Molecular mechanism investigation of the neutralization of cadmium toxicity by transferrin. Physical Chemistry Chemical Physics: PCCP, 18(5), 3536–3544. https://doi.org/10.1039/c5cp06100h
  • Wang X., Wang Z., Yao Y., Li J., Zhang X., Li C., Cheng Y., Ding G., Liu L., Ding Z. (2011). Essential role of ERK activation in neurite outgrowth induced by alpha-lipoic acid. Biochimicaetbiophysicaacta, 1813(5), 827–838. https://doi.org/10.1016/j.bbamcr.2011.01.027
  • Yarwood R. E., Imlach W. L., Lieu T. M., Veldhuis N. A., Jensen D. D., Herenbrink C. K., Aurelio L., Cai Z., Christie M. D. J., Poole D. P., Porter C. J. H., McLean P., Hicks G. A., Geppetti P., Halls M. L., Canals M., Bunnett N. W. (2017). Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. Proceedings of the National Academy of Sciences of the United States of America, 114(46), 12309–12314. https://doi.org/10.1073/pnas.1706656114