2
Views
1
CrossRef citations to date
0
Altmetric
Review

Neuroinflammation: The Abused Concept

&
Article: 17590914231197523 | Received 31 Jul 2023, Accepted 09 Aug 2023, Published online: 16 Jul 2024

References

  • https://www.npr.org/sections/health-shots/2022/01/30/1076166807/how-a-hyperactive-cell-in-the-brain-might-trigger-alzheimers-disease?t=1656320845618
  • Abbott N. J., Patabendige A. A., Dolman D. E., Yusof S. R., Begley D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37(1), 13–25. https://doi.org/10.1016/j.nbd.2009.07.030
  • Alvarez J. I., Dodelet-Devillers A., Kebir H., Ifergan I., Fabre P. J., Terouz S., Sabbagh M., Wosik K., Bourbonnière L., Bernard M., van Horssen J., de Vries H. E., Charron F., Prat A. (2011). The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 334(6063), 1727–1731. https://doi.org/10.1126/science.1206936
  • Alves de Lima K., Rustenhoven J., Kipnis J. (2020). Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annual Review of Immunology, 38, 597–620. https://doi.org/10.1146/annurev-immunol-102319-103410
  • Andoh M., Koyama R. (2021). Comparative review of microglia and monocytes in CNS phagocytosis. Cells, 10(10), 1–27. https://doi.org/10.3390/cells10102555
  • Arnoux A., Dupuis L. (2021). Linking neuroinflammation to motor neuron degeneration in ALS: The critical role of CXCL13/CXCR5. EBioMedicine, 63, 103149. https://doi.org/10.1016/j.ebiom.2020.103149
  • Baker D. L (2022) Editorial in Abbas, Abul K., Lichtman, Andrew H. and Pillai, Shiv, Cellular and molecular immunology. Elsevier.
  • Barroeta-Espar I,et al.. (2019). Distinct cytokine profiles in human brains resilient to Alzheimer’s pathology. Neurobiology of Disease, 121, 327–337. https://doi.org/10.1016/j.nbd.2018.10.009
  • Block M. L., Calderon-Garciduenas L. (2009). Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences, 32(9), 506–516. https://doi.org/10.1016/j.tins.2009.05.009
  • Bonaz B., Sinniger V., Pellissier S. (2017). The Vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Frontiers in Immunology, 8, 1452. https://doi.org/10.3389/fimmu.2017.01452
  • Borst K., Prinz M. (2020). Deciphering the heterogeneity of myeloid cells during neuroinflammation in the single-cell era. Brain Pathology, 30(6), 1192–1207. https://doi.org/10.1111/bpa.12910
  • Boulanger L. M. (2009). Immune proteins in brain development and synaptic plasticity. Neuron, 64(1), 93–109. https://doi.org/10.1016/j.neuron.2009.09.001
  • Bright F., Werry E. L., Dobson-Stone C., Piguet O., Ittner L. M., Halliday G. M., Hodges J. R., Kiernan M. C., Loy C. T., Kassiou M., Kril J. J. (2019). Neuroinflammation in frontotemporal dementia. Nature Reviews. Neurology, 15(9), 540–555. https://doi.org/10.1038/s41582-019-0231-z
  • Brockmeyer S., D’Angiulli A (2016) How air pollution alters brain development: The role of neuroinflammation. Translational Neuroscience, 7(1), 24–30. https://doi.org/10.1515/tnsci-2016-0005
  • Buckley M. W., McGavern D. B. (2022). Immune dynamics in the CNS and its barriers during homeostasis and disease. Immunological Reviews, 306(1), 58–75. https://doi.org/10.1111/imr.13066
  • Condello C., Yuan P., Schain A., Grutzendler J. (2015). Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques. Nature Communications, 6, 6176. https://doi.org/10.1038/ncomms7176
  • Cserep C., Posfai B., Denes A. (2021). Shaping neuronal fate: Functional heterogeneity of direct microglia-neuron interactions. Neuron, 109(2), 222–240. https://doi.org/10.1016/j.neuron.2020.11.007
  • d’Errico P., Ziegler-Waldkirch S., Aires V., Hoffmann P., Mezo C., Erny D., Monasor L. S., Liebscher S., Ravi V. M., Joseph K., Schnell O., Kierdorf K., Staszewski O., Tahirovic S., Prinz M., Meyer-Luehmann M. (2022). Microglia contribute to the propagation of Abeta into unaffected brain tissue. Nature Neuroscience, 25(1), 20–25. https://doi.org/10.1038/s41593-021-00951-0
  • De Logu F., Boccella S., Guida F. (2021). Editorial: The role of neuroinflammation in chronic pain development and maintenance. Frontiers in Pharmacology, 12, 821534. https://doi.org/10.3389/fphar.2021.821534
  • Derecki N. C., Cardani A. N., Yang C. H., Quinnies K. M., Crihfield A., Lynch K. R., Kipnis J. (2010). Regulation of learning and memory by meningeal immunity: A key role for IL-4. Journal of Experimental Medicine, 207(5), 1067–1080. https://doi.org/10.1084/jem.20091419
  • Engelhardt B., Vajkoczy P., Weller R. O. (2017). The movers and shapers in immune privilege of the CNS. Nature Immunology, 18(2), 123–131. https://doi.org/10.1038/ni.3666
  • Escartin C., et al. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 24(3), 312–325. https://doi.org/10.1038/s41593-020-00783-4
  • Filiano A. J., Xu Y., Tustison N. J., Marsh R. L., Baker W., Smirnov I., Overall C. C., Gadani S. P., Turner S. D., Weng Z., Peerzade S. N., Chen H., Lee K. S., Scott M. M., Beenhakker M. P., Litvak V., Kipnis J. (2016). Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature, 535(7612), 425–429. https://doi.org/10.1038/nature18626
  • Filiou M. D., Banati R. B., Graeber M. B. (2017). The 18-kDa translocator protein as a CNS drug target: Finding our way through the neuroinflammation fog. CNS & Neurological Disorders Drug Targets, 16(9), 990–999. https://doi.org/10.2174/1871527316666171004125107
  • Furtado M., Katzman M. A. (2015). Examining the role of neuroinflammation in major depression. Psychiatry Research, 229(1-2), 27–36. https://doi.org/10.1016/j.psychres.2015.06.009
  • Galea E., Heneka M. T., Russo D., Feinstein C., L D. (2003). Intrinsic regulation of brain inflammatory responses. Cellular and Molecular Neurobiology, 23(4-5), 625–635. https://doi.org/10.1023/A:1025084415833
  • Galea E., Weinstock L. D., Larramona-Arcas R., Pybus A. F., Giménez-Llort L., Escartin C., Wood L. B. (2022). Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer’s disease. Neurobiology of Disease, 166, 105655. https://doi.org/10.1016/j.nbd.2022.105655
  • Goldmann T., et al. (2015). USP18 Lack in microglia causes destructive interferonopathy of the mouse brain. EMBO Journal, 34(12), 1612–1629. https://doi.org/10.15252/embj.201490791
  • Graeber M. B. (2010). Changing face of microglia. Science, 330(6005), 783–788. https://doi.org/10.1126/science.1190929
  • Graeber M. B. (2014). Neuroinflammation: No rose by any other name. Brain Pathology, 24(6), 620–622. https://doi.org/10.1111/bpa.12192
  • Graeber M. B., Streit W. J., Buringer D., Sparks D. L., Kreutzberg G. W. (1992) Ultrastructural location of major histocompatibility complex (MHC) class II positive perivascular cells in histologically normal human brain. Journal of Neuropathology & Experimental Neurology, 51(3), 303–311. https://doi.org/10.1097/00005072-199205000-00009
  • Graeber M. B., Kosel S., Grasbon-Frodl E., Moeller H. J., Mehraein P. (1998). Histopathology and APOE genotype of the first Alzheimer disease patient, Auguste D. Neurogenetics, 1(3), 223–228. https://doi.org/10.1007/s100480050033
  • Gratuze M., Chen Y., Parhizkar S., Jain N., Strickland M. R., Serrano J. R., Colonna M., Ulrich J. D., Holtzman D. M. (2021). Activated microglia mitigate Aβ-associated tau seeding and spreading. Journal of Experimental Medicine, 218(8), 1–11. https://doi.org/10.1084/jem.20210542
  • Halder S. K., Milner R. (2019). A critical role for microglia in maintaining vascular integrity in the hypoxic spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 116, 26029–26037. https://doi.org/10.1073/pnas.1912178116
  • Harada R., Furumoto S., Kudo Y., Yanai K., Villemagne V. L., Okamura N. (2022). Imaging of reactive astrogliosis by positron emission tomography. Frontiers in Neuroscience, 16, 807435. https://doi.org/10.3389/fnins.2022.807435
  • Hasel P., Rose I. V. L., Sadick J. S., Kim R. D., Liddelow S. A. (2021). Neuroinflammatory astrocyte subtypes in the mouse brain. Nature Neuroscience, 24(10), 1475–1487. https://doi.org/10.1038/s41593-021-00905-6
  • Heneka M. T., Nadrigny F., Regen T., Martinez-Hernandez A., Dumitrescu-Ozimek L., Terwel D., Jardanhazi-Kurutz D., Walter J., Kirchhoff F., Hanisch U. K., Kummer M. P. (2010). Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 6058–6063. https://doi.org/10.1073/pnas.0909586107
  • Heneka M. T., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
  • Hirsch E. C., Hunot S. (2009). Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurology, 8(4), 382–397. https://doi.org/10.1016/S1474-4422(09)70062-6
  • Hong S., Beja-Glasser V. F., Nfonoyim B. M., Frouin A., Li S. M., Ramakrishnan S., Merry K. M., Shi Q. Q., Rosenthal A., Barres B. A., Lemere C. A., Selkoe D. J., Stevens B. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 352(6286), 712–716. https://doi.org/10.1126/science.aad8373
  • Huang Y., Happonen K. E., Burrola P. G., O’Connor C., Hah N., Huang L., Nimmerjahn A., Lemke G. (2021) Microglia use TAM receptors to detect and engulf amyloid beta plaques. Nature Immunology, 22(5), 586–594. https://doi.org/10.1038/s41590-021-00913-5
  • Iaccarino H. F., Singer A. C., Martorell A. J., Rudenko A., Gao F., Gillingham T. Z., Mathys H., Seo J., Kritskiy O., Abdurrob F., Adaikkan C., Canter R. G., Rueda R., Brown E. N., Boyden E. S., Tsai L. H. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540(7632), 230–235. https://doi.org/10.1038/nature20587
  • Ising C., et al. (2019). NLRP3 Inflammasome activation drives tau pathology. Nature, 575(7784), 669–673. https://doi.org/10.1038/s41586-019-1769-z
  • Kalinin S., Feinstein D. L., Xu H. L., Huesa G., Pelligrino D. A., Galea E. (2006). Degeneration of noradrenergic fibres from the locus coeruleus causes tight-junction disorganisation in the rat brain. European Journal of Neuroscience, 24(12), 3393–3400. https://doi.org/10.1111/j.1460-9568.2006.05223.x
  • Kou L., Chi X., Sun Y., Han C., Wan F., Hu J., Yin S., Wu J., Li Y., Zhou Q., Zou W., Xiong N., Huang J., Xia Y., Wang T. (2022) The circadian clock protein Rev-erbalpha provides neuroprotection and attenuates neuroinflammation against Parkinson’s disease via the microglial NLRP3 inflammasome. Journal of Neuroinflammation, 19(1), 133. https://doi.org/10.1186/s12974-022-02494-y
  • Leng F. D., Edison P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nature Reviews Neurology, 17(3), 157–172. https://doi.org/10.1038/s41582-020-00435-y
  • Lewis C. A., Manning J., Rossi F., Krieger C. (2012). The neuroinflammatory response in ALS: The roles of microglia and T cells. Neurology Research international, 2012: 1–8. https://doi.org/10.1155/2012/803701
  • Li Q. Y., Chen S. X., Liu J. Y., Yao P. W., Duan Y. W., Li Y. Y., Zang Y. ( 2022a). Neuroinflammation in the anterior cingulate cortex: The potential supraspinal mechanism underlying the mirror-image pain following motor fiber injury. Journal of Neuroinflammation, 19(1), 162. https://doi.org/10.1186/s12974-022-02525-8
  • Li X., Kiprowska M., Kansara T., Kansara P., Li P. ( 2022b) Neuroinflammation: A distal consequence of periodontitis. Journal of Dental Research, 101(12), 1441–1449. https://doi.org/10.1177/00220345221102084
  • Liu X. L., Zhang M. M., Liu H. N., Zhu R., He H., Zhou Y. Q., Zhang Y. L., Li C., Liang D. H., Zeng Q., Huang G. Z. (2021). Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Experimental Neurology, 341, 1–16.
  • Lorena F. B., do Nascimento B. P. P., Camargo E., Bernardi M. M., Fukushima A. R., do N. P. J., de B. N. P., Brandao M. E. S., Ribeiro M. O. (2021). Long-term obesity is associated with depression and neuroinflammation. Archives of Endocrinology and Metabolism, 65(5), 537–548. https://doi.org/10.20945/2359-3997000000400
  • Masgrau R., Guaza C., Ransohoff R. M., Galea E. (2017). Should we stop saying ‘glia’ and ‘neuroinflammation’? Trends in Molecular Medicine, 23(6), 486–500. https://doi.org/10.1016/j.molmed.2017.04.005
  • Matta S. M., Hill-Yardin E. L., Crack P. J. (2019). The influence of neuroinflammation in autism Spectrum disorder. Brain Behavior and Immunity, 79, 75–90. https://doi.org/10.1016/j.bbi.2019.04.037
  • McGeer P. L., McGeer E. G., Yasojima K. (2000). Alzheimer disease and neuroinflammation. Journal of Neural Transmission Supplement, 59, 53–57. https://doi.org/10.1007/978-3-7091-6781-6_8
  • McGeer P. L., Klegeris A., Walker D. G., Yasuhara O., McGeer E. G. (1994). Pathological proteins in senile plaques. Tohoku Journal of Experimental Medicine, 174(3), 269–277. https://doi.org/10.1620/tjem.174.269
  • Medawar P. B. (1948). Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology, 29(1), 58–69.
  • Meizlish M. L., Franklin R. A., Zhou X., Medzhitov R. (2021). Tissue homeostasis and inflammation. Annual Review of Immunology, 39, 557–581. https://doi.org/10.1146/annurev-immunol-061020-053734
  • Miller A. A., Spencer S. J. (2014). Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behavior and Immunity, 42, 10–21. https://doi.org/10.1016/j.bbi.2014.04.001
  • Mirabella F., Desiato G., Mancinelli S., Fossati G., Rasile M., Morini R., Markicevic M., Grimm C., Amegandjin C., Termanini A. (2021). Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity, 54(11), 2611–2631. https://doi.org/10.1016/j.immuni.2021.10.006
  • Monji A., Mizoguchi Y. (2022). Neuroinflammation in late-onset schizophrenia: Viewing from the standpoint of the microglia hypothesis. Neuropsychobiology, 81(2), 98–103. https://doi.org/10.1159/000517861
  • Nguyen P. T., Dorman L. C., Pan S., Vainchtein I. D., Han R. T., Nakao-Inoue H., Taloma S. E., Barron J. J., Molofsky A. B., Kheirbek M. A., Molofsky A. V. (2020) Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell, 182(2), 388–403. e315. https://doi.org/10.1016/j.cell.2020.05.050
  • Nimmerjahn A., Kirchhoff F., Helmchen F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308(5726), 1314–1318. https://doi.org/10.1126/science.1110647
  • Olah M., et al. (2020). Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nature Communications, 11(1), 6129. https://doi.org/10.1038/s41467-020-19737-2
  • Orre M., Kamphuis W., Osborn L. M., Jansen A. H. P., Kooijman L., Bossers K., Hol E. M. (2014). Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiology of Aging, 35(12), 2746–2760. https://doi.org/10.1016/j.neurobiolaging.2014.06.004
  • Paolicelli R. C., et al. (2022). Microglia states and nomenclature: A field at its crossroads. Neuron, 110(21), 3458–3483. https://doi.org/10.1016/j.neuron.2022.10.020
  • Parsons A. L. M., Bucknor E. M. V., Castroflorio, E., Soares, T. R., Oliver P. L., Rial D. (2022) The interconnected mechanisms of oxidative stress and neuroinflammation in epilepsy. Antioxidants (Basel), 11(1), 1–17. https://doi.org/10.3390/antiox11010157
  • Pfeiffer R. F. (2009). Neuroinflammation and Parkinson disease: The silent battleground. Neurology, 73(18), 1434–1435. https://doi.org/10.1212/WNL.0b013e3181c2f07d
  • Plowey E. D., Bussiere T., Rajagovindan R., Sebalusky J., Hamann S., von Hehn C., Castrillo-Viguera C., Sandrock A., Budd Haeberlein S., van Dyck C. H., Huttner A. (2022). Alzheimer disease neuropathology in a patient previously treated with aducanumab. Acta Neuropathologica, 144(1), 143–153. https://doi.org/10.1007/s00401-022-02433-4
  • Pracucci E., Pillai V., Lamers D., Parra R., Landi S. (2021). Neuroinflammation: A signature or a cause of epilepsy? International Journal of Molecular Sciences, 22(13), 1–18. https://doi.org/10.3390/ijms22136981
  • Ransohoff R. M., Engelhardt B. (2012). The anatomical and cellular basis of immune surveillance in the central nervous system. Nature Reviews Immunology, 12(9), 623–635. https://doi.org/10.1038/nri3265
  • Ravichandran K. A., Heneka M. T. (2021). Inflammasome activation in neurodegenerative diseases. Essays in Biochemistry, 65(7), 885–904. https://doi.org/10.1042/EBC20210021
  • Ribeiro M., Brigas H. C., Temido-Ferreira M., Pousinha P. A., Regen T., Santa C., Coelho J. E., Marques-Morgado I., Valente C. A., Omenetti S., Stockinger B., Waisman A., Manadas B., Lopes L. V., Silva-Santos B., Ribot J. C. (2019) Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci Immunol, 4(40), 1–13. https://doi.org/10.1126/sciimmunol.aay5199
  • Rua R., McGavern D. B. (2018). Advances in meningeal immunity. Trends in Molecular Medicine, 24(6), 542–559. https://doi.org/10.1016/j.molmed.2018.04.003
  • Sanchez-Mejias E., Navarro V., Jimenez S., Sanchez-Mico M., Sanchez-Varo R., Nuñez-Diaz C., Trujillo-Estrada L., Davila J. C., Vizuete M., Gutierrez A., Vitorica J. (2016). Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathologica, 132(6), 897–916. https://doi.org/10.1007/s00401-016-1630-5
  • Sanmarco L. M., Wheeler M. A., Gutiérrez-Vázquez C., Polonio C. M., Linnerbauer M., Pinho-Ribeiro F. A., Li Z., Giovannoni F., Batterman K. V., Scalisi G., Zandee S. E. J., Heck E. S., Alsuwailm M., Rosene D. L., Becher B., Chiu I. M., Prat A., Quintana F. J. (2021). Gut-licensed IFNγ(+) NK cells drive LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. Nature, 590(7846), 473–479. https://doi.org/10.1038/s41586-020-03116-4
  • Sellner S., Paricio-Montesinos R., Spieß A., Masuch A., Erny D., Harsan L. A., Elverfeldt D. V., Schwabenland M., Biber K., Staszewski O., Lira S., Jung S., Prinz M., Blank T. (2016). Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathologica Communications, 4(1), 102. https://doi.org/10.1186/s40478-016-0374-8
  • Shaw A. T., Gravallese E. M. (2016). Mediators of inflammation and bone remodeling in rheumatic disease. Seminars in Cell & Developmental Biology, 49, 2–10. https://doi.org/10.1016/j.semcdb.2015.10.013
  • Sorensen N. V., Orlovska-Waast S., Jeppesen R., Klein-Petersen A. W., Christensen R. H. B., Benros M. E. (2022). Neuroinflammatory Biomarkers in Cerebrospinal Fluid From 106 Patients With Recent-Onset Depression Compared With 106 Individually Matched Healthy Control Subjects. Biol Psychiatry.
  • Streit W. J., Braak H., Xue Q. S., Bechmann I. (2009). Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathologica, 118(4), 475–485. https://doi.org/10.1007/s00401-009-0556-6
  • Tauber A. I. (2003). Metchnikoff and the phagocytosis theory. Nature Reviews Molecular Cell Biology, 4(11), 897–901. https://doi.org/10.1038/nrm1244
  • Teixeira F. B., Saito M. T., Matheus F. C., Prediger R. D., Yamada E. S., Maia C. S. F., Lima R. R. (2017). Periodontitis and Alzheimer’s disease: A possible comorbidity between oral chronic inflammatory condition and neuroinflammation. Frontiers in Aging Neuroscience, 9, 327. https://doi.org/10.3389/fnagi.2017.00327
  • Tremblay M., Lowery R. L., Majewska A. K. (2010). Microglial interactions with synapses are modulated by visual experience. PLoS Biology, 8(11), e1000527. https://doi.org/10.1371/journal.pbio.1000527
  • Ulland T. K., Colonna M. (2018). TREM2 - a key player in microglial biology and Alzheimer disease. Nature Reviews. Neurology, 14(11), 667–675. https://doi.org/10.1038/s41582-018-0072-1
  • Ulland T. K., Song W. M., Huang S. C., Ulrich J. D., Sergushichev A., Beatty W. L., Loboda A. A., Zhou Y., Cairns N. J., Kambal A., Loginicheva E., Gilfillan S., Cella M., Virgin H. W., Unanue E. R., Wang Y., Artyomov M. N., Holtzman D. M., Colonna M. (2017). TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell, 170(4), 649–663.e613. https://doi.org/10.1016/j.cell.2017.07.023
  • Umpierre A. D., Wu L. J. (2021). How microglia sense and regulate neuronal activity. Glia, 69(7), 1637–1653. https://doi.org/10.1002/glia.23961
  • Vallee A. (2022). Neuroinflammation in schizophrenia: The key role of the WNT/beta-catenin pathway. International Journal of Molecular Sciences, 23(5), 1–15. https://doi.org/10.3390/ijms23052810
  • Vargas D. L., Nascimbene C., Krishnan C., Zimmerman A. W., Pardo C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57(1), 67–81. https://doi.org/10.1002/ana.20315
  • Venegas C., Kumar S., Franklin B. S., Dierkes T., Brinkschulte R., Tejera D., Vieira-Saecker A., Schwartz S., Santarelli F., Kummer M. P., Griep A., Gelpi E., Beilharz M., Riedel D., Golenbock D. T., Geyer M., Walter J., Latz E., Heneka M. T. (2017). Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 552, 355–361. https://doi.org/10.1038/nature25158
  • Viviano M., Barresi E., Simeon F. G., Costa B., Taliani S., Da Settimo F., Pike V. W., Castellano S. (2022) Essential principles and recent progress in the development of TSPO PET ligands for neuroinflammation imaging. Current Medicinal Chemistry, 29(28), 4862–4890. https://doi.org/10.2174/0929867329666220329204054
  • Wahane S., Sofroniew M. V. (2022). Loss-of-function manipulations to identify roles of diverse glia and stromal cells during CNS scar formation. Cell and Tissue Research, 387(3), 337–350. https://doi.org/10.1007/s00441-021-03487-8
  • Wang S., Mustafa M., Yuede C. M., Salazar S. V., Kong P., Long H., Ward M., Siddiqui O., Paul R., Gilfillan S., Ibrahim A., Rhinn H., Tassi I., Rosenthal A., Schwabe T., Colonna M. (2020). Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. Journal of Experimental Medicine, 217(9), 1–19. https://doi.org/10.1084/jem.20200785
  • Wang X., Haroon F., Karray S., Martina D., Schlüter D. (2013). Astrocytic Fas ligand expression is required to induce T-cell apoptosis and recovery from experimental autoimmune encephalomyelitis. European Journal of Immunology, 43(1), 115–124. https://doi.org/10.1002/eji.201242679
  • Wisor J. P., Schmidt M. A., Clegern W. C. (2011). Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep, 34(3), 261–272. https://doi.org/10.1093/sleep/34.3.261
  • Woodburn S. C., Bollinger J. L., Wohleb E. S. (2021). The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation, 18(1), 258. https://doi.org/10.1186/s12974-021-02309-6
  • Yang L., Mao K., Yu H., Chen J. (2020). Neuroinflammatory responses and Parkinson’ disease: Pathogenic mechanisms and therapeutic targets. Journal of Neuroimmune Pharmacology, 15(4), 830–837. https://doi.org/10.1007/s11481-020-09926-7
  • Yao C., Cao Y., Wang D., Lv Y., Liu Y., Gu X., Wang Y., Wang X., Yu B. (2022). Single-cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury. FASEB Journal, 36(7), e22393. https://doi.org/10.1096/fj.202200337R
  • Zamanian J. L., Xu L. J., Foo L. C., Nouri N., Zhou L., Giffard R. G., Barres B. A. (2012). Genomic analysis of reactive astrogliosis. Journal of Neuroscience, 32(18), 6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012