Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 50, 2011 - Issue 1
156
Views
10
CrossRef citations to date
0
Altmetric
Original Article

The mineralogy of pyrrhotite from Sudbury CCN and Phoenix nickel ores and its effect on flotation performance

, &
Pages 10-19 | Received 26 Feb 2010, Accepted 26 Jul 2010, Published online: 22 Nov 2013

References

  • Wells PF, Kelebek S, Burrows MJ, Suarez DF: ‘Pyrrhotite rejection at Falconbridge’s Strathcona Mill’, in ‘Processing of complex ores: mineral processing and the environment, (ed. , Finch J A, , et al.), 51–62; 1997, Montreal, Que., CIM.
  • Posfai M, Sharp TG, Kontny A: ‘Pyrrhotite varieties from the 9.1 km deep borehole of the KTB project’, Am. Mineral., 2000, 85, 1406–1415.
  • Fleet ME: ‘Phase equilibria at high temperatures’, in ‘Sulfide mineralogy and geochemistry, (ed. , Vaughan D J), 365–419; 2006, Washington DC, MSA.
  • Powell AV, Vaqueiro P, Knight KS, Chapon LC, Sanchez RD: ‘Structure and magnetism in synthetic pyrrhotite Fe7S8: a powder neutron‐diffraction study’, Phys. Rev. B, 2004, 70B, 014415‐1–014415‐12.
  • Morimoto N, Nakazawa H, Nishiguchi K, Tokonami M: ‘Pyrrhotites: stoichiometric compounds with composition Fen−1Sn (n>8)’, Science, 1970, 168, 964–966.
  • Carpenter RH, Desborough GA: ‘Range in solid solution and structure of naturally occurring troilite and pyrrhotite’, Am. Mineral., 1964, 49, 1350–1365.
  • Koto K, Morimoto N, Gyobu A: ‘The superstructure of the intermediate pyrrhotite. I. Partially disordered distribution of metal vacancy in the 6C type, Fe11S12’, Acta Crystallogr. Sect. B, 1975, 31B, 2759–2764.
  • de Villiers JPR, Liles D, Becker M: ‘The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry and vacancy distribution’, Am. Mineral., 2009, 94, 1405–1410.
  • Rand DAJ: ‘Oxygen reduction of sulphide minerals. Part III. Comparison of activities of various copper, iron, lead and nickel mineral electrodes’, J. Electroanal. Chem., 1977, 83, 19–32.
  • Belzile N, Chen Y.‐W, Cai M.‐F, Li Y: ‘A review of pyrrhotite oxidation’, J. Geochem. Explor., 2004, 84, 65–76.
  • Kelebek S: ‘The effect of oxidation on the flotation behaviour of nickel–copper ores’, Proc. XVIII Int. Mineral Processing Cong., Sydney, NSW, Australia, May 1993, AusIMM, 999–1005.
  • Spira P, Rosenblum F: ‘The oxygen demand of flotation pulps’, Proc. 6th Annual Meet. of the Canadian Mineral Processors, 74–106; 1974, Ottawa, Ont., CIM.
  • He SH, Grano S, Manoucheri HM, Taylor A, Lawson V: ‘The critical influence of pulp oxygen content on the separation of pentlandite from pyrrhotite in two process streams of the Clarabelle Mill of VALE INCO, Sudbury, Canada’, Proc. Int. Mineral Processing Cong., 1028–1037; 2008, Beijing, Science Press.
  • Vanyukov AV, Razumovskaya NN: ‘Hydrothermal oxidation of pyrrhotites’, Izv. Vissh. Uchebn. Zaved. – Tsvetn. Met., 1979, 6, 605–610.
  • Yakhontova LK, Nesterovich LG, Grudev AP: ‘New data on natural oxidation of pyrrhotite’, Vestn. Mosk. Univ. Geol., 1983, 38, 41–44.
  • Gerson A, Jasieniak M: ‘The effect of surface oxidation on the Cu activation of pentlandite and pyrrhotite’, Proc. 24th Int. Mineral Processing Cong., 1054–1063; 2008, Beijing, Science Press.
  • Iwasaki I: ‘Flotation behaviour of pyrrhotite in the processing of copper–nickel ores’, in ‘Extractive metallurgy of nickel and cobalt’, (ed. , Tyroler G P, Landolt C A), 272–292; 1988, Warrendale, PA, TMS.
  • Harada T: ‘Variation in floatability of pyrrhotites’, Nippon Kogyo Kaishi, 1967, 83, 656–660.
  • Alekseeva RK: ‘Causes of different floatability for pyrrhotite modifications’, Tsventy Met., 1965, 6, 19–22.
  • Kalahdoozan M, Yen WT: ‘Depressing monoclinic and hexagonal pyrrhotite’, in ‘Interactions in mineral processing’, (ed. , Finch J A, et al.), 169–180; 2001, Montreal, Que., CIM.
  • He MF, Qin WQ, Liz WZ, Chen YJ, Lai CH: ‘Research on flotation performances of polymorphic pyrrhotite’, Proc. 24th Int. Mineral Processing Cong., 1153–1160; 2008, Beijing, Science Press.
  • Lawson V, Kerr AN, Shields Y, Wells PF, Xu M, Dai Z: ‘Improving pentlandite pyrrhotite separation at INCO’s Clarabelle Mill’, Proc. Centenary of Flotation Symp., Brisbane, Qld, Australia, June 2005, AusIMM, pp. 875–885.
  • Wiese JG, Harris PJ, Bradshaw DJ: ‘The influence of the reagent suite on the flotation of ores from the Merensky Reef’, Miner. Eng., 2005, 18, 189–198.
  • Bojcevski D, Vink L, Johnson NW, Landmark V, Johnston M, Mackenzie J, Young MF: ‘Metallurgical characterization of George Fisher ore textures and implications for mineral processing’, in ‘Mine to mill’, 29–41; 1998, Brisbane, Qld, AusIMM.
  • Baum W, Lotter NO, Whittaker PJ: ‘Process mineralogy – a new generation for ore characterisation and plant optimization’, Proc. SME Annual Meet., Denver, CO, USA, February 2004, SME, Preprint 04–12.
  • Charland A, Kormos L, Whittaker P, Arrue‐Canales C, Fragomeni D, Lotter N, Mackey P, Anes J: ‘A case study for integrated use of automated mineralogy in plant optimization: The Falconbridge Montcalm Concentrator’, Proc. Conf. Automated Mineralogy 06, Brisbane, Qld, Australia, July 2006, MEI.
  • Brough C, Becker M, Bradshaw DJ: ‘A comparison of the flotation behaviour and the effect of copper activation on three reef types from the Merensky Reef at Northam’, Miner. Eng., 2010, 23, 846–854.
  • Becker M, de Villiers JPR, Bradshaw DJ: ‘The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits’, Econ. Geol., 2010, 105, 1025–1037.
  • Afrox: ‘RN in flotation’, Patent 2008/09676, South Africa, 2008, p. 25.
  • Bradshaw DJ, O’Connor CT: ‘Measurement of the sub‐process of bubble loading in flotation’, Miner. Eng., 1996, 9, 443–448.
  • Becker M: ‘The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits and its effect on flotation performance’, Unpubl. PhD thesis, University of Pretoria, Pretoria, South African, 2009, p. 254.
  • Kelly AP, Vaughan DJ: ‘Pyrrhotine–pentlandite ore textures: a mechanistic approach’, Mineral. Mag., 1983, 47, 453–463.
  • Naldrett AJ, Kullerud G: ‘A study of the Strathcona Mine and its bearing on the origin of the nickel–copper ores of the Sudbury District, Ontario’, J. Petrol., 1967, 9, 453–531.
  • Hamilton IC, Woods R: ‘A voltammetric study of the surface oxidation of sulfide minerals’, in ‘Electrochemistry in mineral and metal processing’, (ed. , Richardson P R, et al.), 259–302; 1984, Pennington, NJ, ECS.
  • Heyes GW, Trahar WJ: ‘The flotation of pyrite and pyrrhotite in the absence of conventional collectors’, in ‘Electrochemistry in mineral and metal processing’, (ed. , Richardson P R, et al.), 219–232; 1984, Pennington, NJ, ECS.
  • Hodgson M, Agar GE: ‘An electrochemical investigation into the natural flotability of pyrrhotite’, in ‘Electrochemistry in mineral and metal processing’, (ed. , Richardson P R, et al.), 185–201; 1984, Pennington, NJ, ECS.
  • Buckley AN, Woods R: ‘X‐ray photoelectron spectroscopy of oxidized pyrrhotite surfaces. 1. Exposure in air’, Appl. Surf. Sci., 1985, 22/23, 280–287.
  • Legrand DL, Bancroft GM, Nesbitt HW: ‘Oxidation/alteration of pentlandite and pyrrhotite surfaces at pH 9.3: Part I. Assignment of XPS spectra and chemical trends’, Am. Mineral., 2005, 90, 1042–1054.
  • Rao SR, Finch JA: ‘Adsorption of amyl xanthate at pyrrhotite in the presence of nitrogen and implications in flotation’, Can. Metall. Q., 1991, 30, 1–6.
  • Allison SA, Goold LA, Nicol MJ, Granville A: ‘A determination of the products of reaction between various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials’, Metall. Trans., 1972, 3, 2513–2618.
  • Fornasiero D, Montalti M, Ralston J: ‘Kinetics of adsorption of ethyl xanthate on pyrrhotite: in‐situ UV and infrared spectroscopic studies’, J. Colloid Interface Sci., 1995, 172, 467–478.
  • Bozkurt V, Xu Z, Finch JA: ‘Pentlandite/pyrrhotite interaction and xanthate adsorption’, Int. J. Miner. Process., 1998, 52, 203–214.
  • Jones MP: ‘Applied mineralogy: a quantitative approach’, 259; 1987, London, Graham & Trotman.
  • Pratt AR, Muir IJ, Nesbitt HW: ‘X‐ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation’, Geochim. Cosmochim. Acta, 1994, 58, 827–841.
  • Janzen MP, Nicholson RV, Scharer JM: ‘Pyrrhotite reaction kinetics: reaction rates for oxidation by oxygen, ferric iron, and for non‐oxidation dissolution’, Geochim. Cosmochim. Acta, 2000, 64, 1511–1522.
  • Bertaut PEF: ‘Contribution a l’Etude des Structures Lacunaires: La pyrrhotine’, Acta Crystallogr., 1953, 6, 557–561.
  • Mikhlin Y, Tomashevich Y: ‘Pristine and reacted surfaces of pyrrhotite and arsenopyrite as studied by X‐ray absorption near‐edge structure spectroscopy’, Phys. Chem. Miner., 2005, 32, 19–27.
  • Almeida CMVB, Giannetti BF: ‘The electrochemical behaviour of pyrite–pyrrhotite mixtures’, J. Electroanal. Chem., 2003, 553, 27–34.
  • Ekmekci Z, Demirel H: ‘Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite’, Int. J. Miner. Process., 1997, 52, 31–48.
  • Buswell AM, Nicol MJ: ‘Some aspects of the electrochemistry of the flotation of pyrrhotite’, J. Appl. Electrochem., 2002, 32, 1321–1329.
  • Miller JA, Li C, Davidtz JC, Vos F: ‘A review of pyrrhotite flotation chemistry in the processing of PGM ores’, Miner. Eng., 2005, 18, 855–865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.