Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 23, 2001 - Issue 2-3: Neurotrauma
67
Views
14
CrossRef citations to date
0
Altmetric
Articles

Alterations in cerebral energy metabolism induced by traumatic brain injury

, &
Pages 129-138 | Published online: 19 Jul 2013

REFERENCES

  • McHenry LC Jr. Cerebral Circulation and Stroke, St. Louis: Warren H. Green, 1978
  • Erecinska M, Silver IA. ATP and brain function.J Cereb Blood Flow Metab 1989; 9: 2–19
  • Rossen R, Kabat H, Anderson JP. Acute arrest of cerebral circulation man. Arch Neurol Psychiatry 1943; 50: 510-528
  • Lust WD, Arai H, Yasumoto Y, Whittingham TS, Djuricic B, Mrsulja B, Passonneau iv. Ischemic encephalopathy. In: McCandless DW, ed. Cerebral Energy Metabolism and Metabolic Encephalopathy, New York: Plenum Press, 1985: pp. 79-112
  • Boyer PD. The ATP synthase — a splendid molecular machine. Ann Rev Biochem 1997; 66: 717–749
  • Astrup J. Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy. J Neurosurg 1982; 56: 482-497
  • Siesjo BK. Cerebral circulation and metabolism. J Neurosurg 1984; 60: 883–908
  • Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg 1992; 77: 169-184
  • Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 1992; 77: 337-354
  • Landolt H, Langemann H. Cerebral microdialysis as a diagnostic tool in acute brain injury. Eur J Anesthesiology 1996; 13: 269-278
  • Vinas FC, Verweij BH, Muizelaar JP. Invasive monitoring of cerebral oxygenation. Crit Rev Neurosurg 1998; 8: 31–40
  • Hillered L, Persson L. Neurochemical monitoring of the acutely injured human brain. Scand J Clin Lab Invest Invest; 229 (Suppl.): 9-18
  • Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: Physiological and pathological relevance. Am J Physiol 1994; 267: C313—C339
  • Lee CP. Preface. In: Lee CP, ed. Current Topics in Bioenergetics: Molecular Basis of Mitochondrial Pathology, Vol 17, San Diego: Academic Press, 1994: pp. xi—xxii
  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 1996; 86: 147–157
  • Petit PX, Zamzami N, Vayssiere IL, Mignotte B, Kroemer G, Castedo M. Implication of mitochondria in apoptosis. Mol Cell Biochem 1997; 174: 185-188
  • Mignotte B, Vayssiere J-L. Motochondria and apoptosis. Eur J Biochem 1998; 252: 1-15
  • Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Ann Rev Physiol 1998; 60: 619-642
  • Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA. The role of secondary brain injury in determining outcome from severe head injury. J Trauma 1993; 34: 216–222
  • Bryan RM, Cherian L, Robert C. Regional cerebral blood flow after controlled cortical impact injury in rats. Anesth Analg 1995; 80: 687–695
  • Kochanek PM, Marion DW, Zhang WG, Schiding JK, White M, Palmer AM, Clark RS, O'Malley ME, Styren SD, Ho C, DeKosky ST. Severe controlled cortical impact in rats: Assessment of cerebral edema, blood flow and contusion volume. J Neurotrauma 1995; 12: 1015–1025
  • Bouma GJ, Muizelaar JP, Choi SWC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury: The elusive role of ischemia. J Neurosurg 1991; 75: 685–693
  • Sahuquillo J, Poca MA, Garnacho A, Robles A, Coello F, Godet C, Triginer C, Rubio E. Early ischaemia after severe head injury. Preliminary results in patients with diffuse brain injuries. Acta Neurochir (Wien) 1993; 122: 204-214
  • Kelly DF, Martin NA, Kordestani R, Counel is G, Hovda DA, Bergsneider M, McBride DQ, Shalmon E, Herman D, Becker DP. Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg 1997; 86: 633–641
  • Dearden NM. Mechanisms and prevention of secondary brain damage during intensive care. Clin Neuropathol 1998; 17: 221–228
  • Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP. Characterization of cerebral hemodynamic phases following severe head trauma: Hypo-perfusion, hyperem ia, and vasospasm. J Neurosurgl 997; 87: 9-19
  • Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, Phelps ME, McArthur DL, Caron MJ, Kraus JF, Becker DP. Cerebral hyperglycolysisfollowing severe traumatic brain injury in humans:A positron emission tomography study. J Neurosurg 1997; 86: 241-251
  • Robertson CS, Corm io M. Cerebral metabolic management. New Horizon 1995; 3: 410–422
  • Ritter AM, Robertson CS. Cerebral metabolism. Neurosurg Clin N Am 1994; 5: 633–645
  • Siesjo BK. Brain Energy Metabolism, Chichester: John Wiley & Sons, 1978
  • Rosenthal RE, Fiskum G. Brain mitochondrial function in cerebral ischemia and resuscitation. In: Schurr A, Rigor BM, eds. Cerebral Ischemia and Resuscitation, Boca Raton: CRC Press, 1990: pp. 289–300
  • Whittingham TS. Aspects of brain energy metabolism and cerebral ischemia. In: Schurr A, Rigor BM, eds. Cerebral Ischemia and Resuscitation, Boca Raton: CRC Press, 1990: pp. 101–121
  • Sims NR, Pulsinelli WA. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient fore-brain ischemia in the rat. Neurochem 1987; 49: 1367–1376
  • Sims NR. Selective impairment of respiration in mitochondria isolated from brain subregions following transient forebrain ischemia in the rat. Neurochem 1991; 56: 1836–1844
  • Sciamanna MA, Zinkel J, Fabi AY, Lee CP. Ischemic injury to rat forebrain mitochondria and cellular calcium homeostasis. Biochim Biophys Acta 1992; 1134: 223–232
  • Sciamanna MA, Lee CP. Ischemia/reperfusion-induced injury of forebrain mitochondria and prevention by ascorbate. Arch Biochem Biophys 1993; 305: 215–224
  • Anderson MF, Sims NR. Mitochondrialrespiratoryfunction and cell death in focal cerebral ischemia. J Neurochem 1999; 73: 1189–1199
  • Hovda DA, Yoshino A, Kawamata T, Katayama Y, Becker DP. Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: A cytochromeoxidase histochemistry study. Brain Res 1991; 567: 1–10
  • Hovda DA, Villablanca JR. Sparing of visual field perception in neonatal but not adult cerebral hem ispherectomizedcats. Relation-ship with oxidative metabolism of the superior colliculus. Behav Brain Res 1990; 37: 119–132
  • Sutton RL, Hovda DA, Adelson PD, Benzel EC, Becker DP. Metabolic changes following cortical contusion: Relationship to edema and morphological changes. Acta Neurochir Neurochir; 60 (Suppl.): 446-448
  • Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP. Dynamic changes in local cerebral glucose utilization following a fluid percussion injury: Evidence of a hyper- and subsequent hypometabolic state. Brain Res 1991; 561: 106–119
  • Shiraishi K, Sharp FR, Simon RP. Sequential metabolic changes in rat brain following middle cerebral artery occlusion: A 2-deoxyglucose study. J Cereb Blood Flow Metab 1989; 9: 765–773
  • Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP. Lactate accumulation following concussive brain injury: The role of ionic fluxes induced by excitatory amino acids. Brain Res 1995; 674: 196–204
  • Siesjo BK, Katsura K-I, Zhao Q, Folbergrova J, Pahlmark K, 5 iesjo P, Smith M-J. Mechanisms of secondary brain damage in global and focal ischemia: A speculative synthesis. J Neurotrauma 1995; 12: 943–956
  • Inao S, Marmarou A, Clarke GD, Andersen BJ, Fatouros PP, Young HF. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg 1988; 69: 736–744
  • Zauner A, Doppenberg E, Woodward JJ, Allen C, Jebraili S, Young HF, Bullock R. Multiparametric continuous monitoring of brain metabolism and substrate delivery in neurosurgical patients. Neurol Res 1997; 19: 265–273
  • Vink R, McIntosh TK, Yamakami I, Faden Al. 31 P NMR characterization of graded traumatic brain injury in rats. Magnetic Resonance in Medicine 1988; 6: 37–48
  • McIntosh TK, Vink R, Faden Al. An analogue of thyrotropin-releasing hormone improves outcome after brain injury: 31P-NMR studies. Am Physiol 1988; 254: R785—R792
  • Bell MJ, Kochanek PM, Carcillo JA, Mi Z, Schiding JK, Winsniewski SR, Clark RS, Dixon CE, Marion DW, Jackson E. Interstitial adenosine, inosine, and hypoxanthine are increased after experi-mental traumatic brain in the rat. J Neurotrauma 1998; 15: 163–170
  • Dietrich WD, Alonso O, Busto R, Ginsberg MD. Widespread metabolicdepression and reduced somatosensory circuitactivation followingtraumatic brain injury. J Neurotrauma 1994; 11: 629–640
  • Jiang XB, Kuroiwa T, Ohno K, Duan L, Aoyagi M, Hirakawa K. Local mitochondrial function following traumatic brain injury in rats. Neurol Med Chir (Tokyo) 1999; 39: 649-656
  • Mu izelaarJP, Marmarou A, DeSallesAA, Ward JD, Zimmerman RS, Li Z, Choi SC, Young HF. Cerebral blood flow and metabolism in severely head-injured children. Part I: Relationsh ip with GCS score, outcome, ICP, and PVI. J Neurosurg 1989; 71: 63–71
  • Robertson CS, Narayan RK, Gokaslan ZL, et al. Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg 1989; 70: 222–230
  • Sharpies PM, Stuart AG, Matthews DS, Aynsley-Green A, Eyre JA. Cerebral blood flow and metabolism in children with severe head injury. Part I: Relationsh ip to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry 1995; 58: 145-152
  • Vagnozzi R, Marmarou A, Tavazzi B, Signoretti S, Di Pierro D, del Bolgia F, Amorini AM, Fazzina G, Sherkat S, Lazzarino G. Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J Neurotrauma 1999; 16: 903–913
  • DeSalles AA, Mu izelaar JP, Young HF. Hyperglycemia, cerebro-spinal fluid lactic acidosis, and cerebral blood flow in severely head-injured patients. Neurosurgery 1987; 21: 45–50
  • Basford RH. Preparation and properties of brain mitochondria. Methods Enzymo 11967; 10: 96-101
  • Clark JB, Nicklas WJ. The metabolism of rat brain mitochondria: Preparation and characterization. J Biol Chem 1970; 245: 4724–4731
  • Lai JC, Clark JB. Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Meth Enzymol 1979; 55: 51–60
  • Lee CP, Sciamanna M, Peterson PL. Intact rat brain mitochondria from a single animal: Preparation and properties. Meth Toxicol 1993; 2: 41–49
  • Xiong Y, Gu Q, Peterson PL, Mu izelaar JP, Lee CP. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 1997; 14: 23–34
  • Xiong Y, Peterson PL, Muizelaar JP, Lee CP. Amelioration of m itochondrial function by a novel antioxidant U-101033E follow-ing traumatic brain injury in rats. J Neurotrauma 1997; 14: 907–917
  • Xiong Y, Peterson PL, Verweij BH, Virias FC, Mu izalaar JP, Lee CP. Mitochondrial dysfunction after experimental traumatic brain injury: Combined efficacy of SNX-111 and U-101033E. J Neuro-trauma 1998; 14: 531–544
  • Xiong Y, Peterson PL, Lee CP. Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J Neurotrauma 1999; 16: 1067–1082
  • Dunkley PR, Heath JW, Harrison SM, Jarvie PE, Glenfield PJ, Rostas JA. A rapid Percoll gradient procedure for isolation of synapto-somes directly from an Si fraction: Homogeneity and morphology of subcellular fractions. Brain Res 1988; 441: 59–71
  • Davey GP, Canevari L, Clark JB. Threshold effects in synaptosoma I and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex regions. J Neurochem 1997; 69: 2564–2570
  • Vink R, Head VA, Rogers PL, McIntosh TK, Faden Al. Mitochon-drial metabolism following traumatic brain injury in rats. J Neurotrauma 1990; 7: 21–27
  • Zhang Y, Marci liat O, Girlivi C, Ernster L, Davies KJ. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 1990; 265: 16330–16336
  • Sullivan PG, Keller JN, Mattson MP, Scheff SW. Traumatic brain injury alters synaptic homeostasis: Implications for impaired mitochondrial and transport function. J Neurotrauma 1998; 15: 789–798
  • Wagner KR, Tornheim PA, Eich hold MK. Acute changes in regional cerebral metabolite values following experimental blunt head trauma. J Neurosurg 1985; 63: 88–96
  • Yang MS, Dewitt DS, Becker DP, Hayes RL. Regional brain metabolite levels following mild experimental head trauma in the car. J Neurosurg 1985; 63: 617–621
  • Proctor HJ, Palladino GW, Fillipo D. Failure of autoregulation after closed head injury: A experimental model. J Trauma 1988; 28: 347–352
  • Cadoux-Hudson TA, Wade D, Taylor DJ, Rajagopalan B, Leding-ham JG, Briggs M, Radda GK. Persistent metabolic sequelae of severe head injury in humans in vivo. Acta Neurochir 1990; 104: 1-7
  • Headrick JP, Bendall MR, Faden At, Vink R. Dissociation of adenosine levels from bioenergetic state in experimental brain trauma: Potential role in secondary injury. I Cereb Blood Flow Metab 1994; 14: 853–861
  • Prasad MR, Dhillon HS, Carbary T, Dempsey RJ, Scheff SW. Enhanced phosphodiestric breakdown of phosphatidylinositol bisphosphate after experimental brain injury. J Neurochem 1994; 63: 773–776
  • Verweij BH, Mu izelaar JP, Virias FC, Peterson PL, Xiong Y, Lee CP. Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective N-type calcium channel antagonist (SNX-111). Neurol Res 1997; 19: 334–339
  • Verweij BH, Mu izelaar JP, Virias FC, Peterson PL, Xiong Y, Lee CP. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg 2000; 93: 815-820
  • Verweij BH, Muizelaar JP, Viiias FC, Peterson PL, Xiong Y, Lee CP. Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for precl in ica I trials: Dose—response and time—window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury. J Neurosurg 2000; 93: 829–834
  • Kelly GS. Clinical applications of N-acetylcysteine. Alternative Medicine Review 1998; 3: 114–127
  • Corcoran GB, Wong BK. role of glutathione in prevention of acetaminophen-induced hepatotoxicity by N-acetyl-L-cysteine in vivo: Studies with N-acetyl-D-cystgeine in mice. J Pharmacol Exp Ther 1986; 238: 54–61
  • Aruoma 01, Hal I iwell B, Hoey BM, Butler J. The antioxidantaction of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Rad Biol Med 1989; 6: 593–597
  • Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE. N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke 1995; 26: 305–311
  • Ellis EF, Dodson LY, Police RJ. Restoration of cerebrovascular responsivenessto hyperventilationby the oxygen radical scavenger N-acetylcysteine following experimental traumatic brain injury. J Neurosurg 1991; 75: 774–779
  • Hall ED, Andrus PK, Smith SL, Oostveen JA, Scherch HM, Lutzke BS, Raub Ti, Sawada GA, Palmer JR, Banitt LS, Tustin JS, Belonga KL, Ayer DE, Bundy GL. Neuroprotective efficacy of micro-vascularly-loca lized versus brain-penetrating antioxidants. Acta Neurochir Neurochir; 66 (Suppl.): 107-113
  • Hall ED, Smith SL, Oostveen IA. Inhibition of lipid peroxidation attenuatesaxotomy-inducedapoptotic degeneration of facial motor neurons in neonatal rats. J Neurosci Res 1996; 44: 293–299
  • Bowersox S, Mandema J, Tarczy-Hornoch K, Miljanich G, Luther RR. Pharmacokinetics of SNX-111, a selective N-type calcium channel blocker, in rats and cynomolgus monkeys. Drug Metabolism & Disposition 1997; 25: 379–383
  • BraughlerJ M, Duncan LA, Goodman T. Calcium enhances in vitro free radical-induced damage to brain synaptosomes, mitochondria and cultured spinal cord neurons. J Neurochem 1985; 45: 1288–1293

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.