Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 23, 2001 - Issue 4
49
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Correlation between bradykinin-induced blood–tumor barrier permeability and B2 receptor expression in experimental brain tumors

, , , , , & show all
Pages 379-387 | Published online: 19 Jul 2013

REFERENCES

  • Black KL. Biochemical opening of the blood—brain barrier. Adv Drug Delivery Rev 1995; 15: 37–52
  • Black KL. The blood—brain barrier. In: Youmans JR, ed. Neuro-logical Surgery, Philadelphia: W.B. Saunders Co., 1996: pp. 482–490
  • Pardridge W. Brain drug delivery and blood—brain barriertransport. Drug Delivery 1996; 3: 99-115
  • FernstermacherJ D, Cowles AL. Theoretic limitationsof intracarotid infusion in brain tumor chemotherapy. Cancer Treat Rep 1977; 61: 519–526
  • Groothuis DR, Fischer JR, Lapin G, Bigner DD, Vick NA. Permeability of different experimental brain tumor models to horseradish peroxidase. I Neuropathol Exp Neurol 1982; 41: 164-185
  • Neuwelt EA, Barnett PA, Bigner DD, Frenkel EP. Effects of adrenal cortical steroids and osmotic blood—brain barrier opening on methotrexate delivery to gliomas in the rodent: The factor of the blood—brain barrier. Proc Natl Acad Sci USA 1982; 79: 4420–4423
  • Black KL, King WA, Ikezaki K. Selective opening of the blood—tumor barrier by intracarotid infusion of leukotriene C4. I Neurosurg 1990; 72: 912–916
  • Black KL, Baba T, Pardridge WM. Enzymatic barrier protects brain capillaries from leukotriene C4. I Neurosurg 1994; 81: 745–751
  • Black KL, Chio CC. Increased opening of blood—tumor barrier by leukotriene C4 is dependent on size of molecules. Neurol Res 1992; 14: 402–405
  • Inamura T, Nomura T, Bartus RT, Black KL. Intracarotid infusion of RMP-7, a bradykin in analog: A method for selective drug delivery to brain tumors. J Neurosurg 1994; 81: 752–758
  • Inamura T, Black KL. Bradykin in selectively opens blood—tumor barrier in experimental brain tumors. I Cereb Blood Flow Metab 1994; 14: 862–870
  • Nomura T, Inamura T, Black KL. Intracarotid infusion of bradykinin selectively increases blood—tumor permeability in 9L and C6 brain tumors. Brain Res 1994; 659: 62–66
  • Alvarez AL, Delorenzi A, Santa Juliana D, Finkielman S, Nahmod VE, Pirola CJ. Central bradykininergic system in normotensive and hypertensive rats. Clin Sci 1992; 82: 513-519
  • Yong T, Gao XP, Koizumi S, Conlon JM, Rennard SI, Mayhan WG, Rubinstein I. Role of peptidases in bradykinin-induced increase in vascular permeability in vivo. Circ Res 1992; 70: 952–959
  • Raymond JJ, Robertson DM, Dinsdale HB. Pharmacological modification of bradykinin induced breakdown of the blood—brain barrier. Can J Neurol Sci 1986; 13: 214–220
  • Matsukado K, Inamura T, Nakano S, Fukui M, Bartus RT, Black KL. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery 1996; 39: 125–134
  • Matsukado K, Nakano S, Bartus R, Black KL. Steroids decrease uptake of carboplatin in rat gliomas: Uptake improved by intracarotid infusion of bradykinin analog, RMP-7. J Neurooncol 1997; 34: 131–138
  • Matsukado K, Sugita M, Black KL. Intracarotid low dose bradykinin infusion selectively increases tumor permeability through activa-tion of bradykinin B2 receptors in malignant gliomas. Brain Res 1998; 792: 10–15
  • Black KL, Cloughesy T, Huang SC, Gobin YP, Zhou Y, Grous J, Nelson G, Farahani K, Hoh CK, Phelps M. Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylene- diamine tetraacetic acid into human gliomas. J Neurosurg 1997; 86: 603–609
  • Sugita M, Black KL. Cyclic GMP-specific phosphodiesterase inhibition and intracarotid bradykinin infusion enhances perme-ability into brain tumors. Cancer Res 1998; 58: 914–920
  • Riley G, Kim N, Watson V, Gobin YP, LeBel CP, Black KL, Bartus RL. Intra-arterial administration of carboplatin and the blood—brain barrier permeabilizing agent, RMP-7: A toxicologic evaluation in swine. J Neurooncol 1998; 36: 167–178
  • Cloughesy TF, Black KL, Gobin YP, Farahani K, Nelson G, Villablanca P, Kabbinavar F, Vineula F, Wortel CH. Intra-arterial Cereport (RMP-7) and carboplatin: A dose escalation study for recurrent ma lignant gliomas. Neurosurgery 1999; 44: 270–279
  • Barth RF, Yang W, Bartus RT, Moeschberger ML, Goodman JH. Enhanced delivery of boronphenyalanine for neutron capture therapy of brain tumors using the bradykinin analog Cereport (Receptor-Mediated Permeabilizer-7). Neurosurgery 1999; 44: 351–360
  • Nakano SW, Matsukado K, Black KL. Enhanced cytokines delivery and intercellular adhesion molecule 1 (ICAM-1) expression in glioma by intracarotid infusion of bradykinin analog, RMP-7. Neurol Res 1997; 19: 501–508
  • Rainov NG, Dobberstein KU, Heidecke V, Dorant U, Chase M, Kramm CM, Chiocca EA, Breakfield XO. Long-term survival in a rodent brain tumor model by bradykinin-enhanced intra-arterial delivery of a therapeutic herpes simplex virus vector. Cancer Gene Ther 1998; 5: 158–162
  • LeMay DR, Kittaka M, Gordon EM, Gray B, Stins MF, McComb JG, Jovanovic S, Tabrizi P, Weiss MH, Bartus R, Anderson WF, Zlokovic By. Intravenous RMP-7 increases delivery of gancyclovir into rat brain tumors and enhances the effects of herpes simplex virus thymidine kinase gene therapy. Human Gene Ther 1998; 9: 989-995
  • Regoli D, Barabe J. Pharmacologyof bradykinin and related kinins. Pharmacol Rev 1980; 32: 1–46
  • McEachern AE, Shelton ER, Bhakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K. Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci USA 1991; 88: 7724–7728
  • Hall JM. Bradykinin receptors: Pharmacological properties and biological roles. Phar Ther 1992; 56: 131–191
  • Nardone J, Gerald C, Rimawi L, Song L, Hogan PG. Identification of a B2 bradykinin receptor expressed by PC12 pheochromo-cytoma cells. Proc Natl Acad Sci USA 1994; 91: 4412–4416
  • Bartus RT, Elliott PJ, Dean RL, Hayward NH, Nagle TL, Huff MR, Snodgrass PA, Blunt DG. Controlled modulation of BBB perme-ability using the bradykinin agonist, RMP-7. Exp Neuro 11996; 142: 14-28
  • Elliott PJ, Hayward NJ, Huff MR, Nagle TL, Black KL, Bartus RT. Unlocking the blood—brain barrier:A role for RMP-7 in brain tumor therapy. Exp Neurol 1996; 141: 214–224
  • Fray A, Johns A, Adams DJ, Ryan US, Vanbreemen C. Bradykinin and inositol 1,4,5-triphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pflgars Arch 1989; 414: 377–384
  • AbdAl la S, Muller-Esterl W, Quitterer U. Two distinct Ca2+ influx pathways activated by the bradykinin B2 receptor. Eur J Biochem 1996; 241: 498–506
  • Mittal CK, Mehta CS. Regulation of nitric oxide synthase: Role of oxygen radicals and cations in nitric oxide formation. Adv Pharmacol 1995; 34: 235–250
  • Nakano S, Matsukado K, Black KL. Increased brain tumor microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide. Cancer Res 1996; 56: 4027–4031
  • Sugita M, Hunt GE, Liu Y, Black KL. Nitric oxide and cyclic GMP attenuate sensitivity of the blood—tumor barrier permeability to bradykinin. Neurol Res 1998; 20: 559–563
  • Homayoun P, Lust WD, Harik SI. Effectof several vasoactive agents on guanylate cyclase activity in isolated rat brain microvessels. Neurosci Lett 1989; 107: 273–278
  • Marsau It R, Frelin C. Activation by nitric oxide of guanylatecyclase in endothelial cells from brain capillaries. J Neurochem 1992; 59: 942–945
  • Murad F. Regulation of cytosolic guanylyl cyclase by nitric oxide: The NO-cyclic GMP signal transduction system. Adv Pharmacol 1994; 26: 19–33
  • Murad F. Signal transduction using nitric oxide and cyclic gulanosine monophosphate. JAMA 1996; 276: 1189–1192
  • Joo F, Temesvari P, Dux E. Regulation of the macromolecular transport in the brain microvessels: The role of cyclic GMP. Brain Res 1983; 278: 165–174
  • Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: A comparison of osmotic versus bradykinin modification of the blood—brain and/or blood—tumor barriers. Neurosurgery 1998; 43: 879–889
  • Ohno K, Pettigrew KD, Rapaport SI. Lower limits of cerebro-vascular permeabilityto nonelectrolytes in the conscious rat. Am J Physiol 1978; 235: H299—H307
  • Busse R, Mulsh A, Fleming L, Hecker M. Mechanism of nitric oxide release from the vascular endothelium. Circulation 1993; 87: V18—V25
  • Wang X, Robinson PJ. Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J Neurochem 1997; 68: 443–456

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.