Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 29, 2007 - Issue 3
38
Views
14
CrossRef citations to date
0
Altmetric
Articles

Do sodium channel blockers have neuroprotective effect after onset of ischemic insult?

, , , , , , & show all
Pages 317-323 | Published online: 19 Jul 2013

REFERENCES

  • Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239: 57–69
  • Kirino T, Sano K. Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol (Berl) 1984; 62: 201–208
  • Pulsinelli WA, Brierley LB, Plum FC. Temporal profile of neuronal damage in a model of transient ischemia. Ann Neurol 1982; 11: 491–498
  • Schmidt-Kastner R, Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 1991; 40: 599–636
  • Crews FT, Steck JC, Chandler U. Ethanol, stroke, brain damage, and excitotoxicity. Pharmacol Biochem Behav 1998; 59: 981–991
  • Ikemune I, Mitani A, Namba S, et al. Functional changes of N-methyl-D-Aspartic acid and alpha-amino-3-hydroxy-5-methy1-4-isoxazolepropionate channels in gerbil hippocampal CA1, in relation to postischemic enhancement of glutamate receptor-mediated responses. Neurosci Lett 1999; 275: 125–128
  • Rasool N, Faroqui M, Rubinstein EH. Lidocaine accelerates neuroelectrical recovery after incomplete global ischemia in rabbits. Stroke 1990; 21: 929–935
  • Schwartz GW, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: Improved behavioral and neuroanatomical recovery with riluzole. I Neurosurg 2001; 94: 245–256
  • Reitmeier RA. Mammalian exchangers and co-transporters. Curr Opin Cell Biol 1994; 6: 583–594
  • Stys PK, Waxman SG, Ransom BR. Na(+)-Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Ann Neurol 1991; 30: 375–380
  • Stys PK, Waxman SG, Ransom BR. Ionic mechanisms of anoxic injury in mammalian CNS white matter: Role of Na (+) channels and Na(+)-Ca2+ exchanger. Neurosci 1990; 12: 430–439
  • Regan RF, Choi DW. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 1991; 43: 585–594
  • Taylor CP, Geer JJ, Burke SP. Endogenous extracellular glutamate accumulation in rat neocortical cultures by reversal of transmem-brane sodium gradient. Neurosci Lett 1992; 145: 197–200
  • Hewitt KE, Stys PK, Lesiuk Hi. The use-dependent sodium channel blocker mexiletine is neuroprotective against global ischemic injury. Brain Res 2001; 898: 281–287
  • Chang CZ, Winardi D, Loh JK, et al. Alteration of ischemic reperfusion injury in the rat neocortex by a potent antioxidant mexiletine. Acta Neurochir (Wien) 2002; 144: 189–193
  • Lee EJ, Ayoub IA, Harris FB, et al. Mexiletine and magnesium independently, but not combined, protect against permanent, focal cerebral ischemia in Wistar rats. ] Neurosci Res 1999; 58: 442-448
  • Bae Hi, Lee YS, Kang DW, et al. Neuroprotective effect of low dose riluzole in gerbil model of transient global ischemia. Neurosci Lett 2000; 294: 29–32
  • Pratt J, Rataud J, Bardot F, et al. Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischemia. Neurosci Lett 1992; 140: 225–230
  • Shokunbi MT, Gelb AW, Wu XM, et al. Continuous lidocaine infusion and focal cerebral ischemia in rats. Stroke 1990; 21: 107–111
  • Sutherland G, Ong BY, Louw D, et al. Effect of ldocaine on forebrain ischemia in rats. Stroke 1989; 20: 119–122
  • Boxer PA, Cordon JJ, Mann ME, et al. Comparison of phenytoin with non-competitive N-methyl-D-aspartate antagonists in a model of focal brain ischemia in rat. Stroke 1990; 21 (Suppl. III): 47-51
  • Burke SP, Taylor CP. Hippocampal glutamate release during 'in vitro ischemia' is calcium-independent and TTX-sensitive. Soc Neurosci Abstr 1991; 17: 1267
  • Lysko PG, Webb CL, Yue TL, et al. Feuerstein, Neuroprotective effects of tetrodotoxin as a Na± channel modulator and glutamate release inhibitor in cultured rat cerebellar neurons and in gerbil global brain ischemia. Stroke 1994; 25: 2476–2482
  • Menkli A, Koç RK, Tayfur V, et al. Effects of mexiletine, ginkgo biloba extract (EGb 761), and their combination on experimental head injury. Neurosurg Rev 2003; 26: 288–291
  • Prenen GH, Go KG, Postema F, et al. Cerebral cation shifts in hypoxic-ischemic brain damage are prevented by the sodium channel blocker tetrodotoxin. Exp Neurol 1988; 99: 118–132
  • Galvao RIM, Diogenes JPL, Maia GCL, et al. Tenoxicam exerts a neuroprotective action after cerebral ischemia in rats. Neurochem Res 2005; 30: 39–46
  • Okiyama K, Smith DH, Gennarelli TA, et al. The sodium channel blocker and glutamate release inhibitor BW1003C87 and magne-sium attenuate regional cerebral edema following experimental brain injury in the rat. Neurochem 1995; 64: 802–809
  • Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978; 86: 271–278
  • Lee SR, Suh S, Kim SP. Protective effects of green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 2000; 287: 191–194
  • Sharma BK, Kumar K. Role of proinflammatory cytokines in cerebral ischemia: A review. Metabol Brain Dis 1998; 13: 1–8
  • He Z, lbayashi S, Sugimori H, et al. Age-related ischemia in the brain following bilateral carotid artery occlusion — collateral blood flow and brain metabolism. Neurochem Res 1997; 22: 37–42
  • Shapira S, Sapir M, Wengier A, et al. Aging has a complex effect on a rat model of ischemic stroke. Brain Res 2002; 925: 148–158
  • Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987; 7: 369–379
  • Choi DW. Cerebral hypoxia: Some new approaches and unan-swered questions. J Neurosci 1990; 10: 2493–2501
  • Sims NR, Zaidan E. Biochemical changes associated with selective neuronal death following short-term cerebral ischemia. Int J Biochem Cell Biol 1995; 27: 531–550
  • Yamasaki Y, Kogure K, Hara H, et al. The possible involvement of tetrodotoxin-sensitive ion channels in ischemic neuronal damage in the rat hippocampus. Neurosci Lett 1991; 121: 251–254
  • Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Eng J Med 1994; 330: 585–591
  • Doble A. The pharmacology and mechanism of action of riluzole. Neurology 1996; 47 (Suppl. 4): 233-241
  • Huang CS, Song JH, Nagata K, et al. Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons.] Pharmacol Exp Ther 1997; 282: 1280–1290
  • Peluffo H, Estevez A, Barbeito L, et al. Riluzole promotes survival of rat motoneurons in vitro by stimulating trophic activity produced by spinal astrocyte monolayers. Neurosci Lett 1997; 228: 207–211
  • Pratt J, Archambaud C, Böhme GA, et al. The effect of riluzole and mannitol on cerebral oedema after cryogenic injury in the mouse. Neurosci Lett 1999; 272: 143–145
  • Kwon JY, Bacher A, Zornow MH. Riluzole does not attenuate increases in hippocampal glutamate concentrations in a rabbit model of repeated transient global cerebral ischemia. Anesth Analg 1998; 86: 128–133
  • Bryson HM, Fulton B, Benfiald P. Riluzole. A review of its, pharmacodynamic and pharmacokinetic properties and therapeu-tic potential in amyotrophic lateral sclerosis. Drugs 1996; 52: 549–563
  • Stefani A, Spadoni F, Bernardi G. Differential inhibition by riluzole, lamotrigine, and phenytoin of sodium and calcium currents in cortical neurons: implication for neuroprotective strategies. Exp Neurol 1997; 147: 115–122
  • Stys PK, Waxman SG. Activity dependent modulation of excit-ability: Implications for axonal physiology and pathophysiology. Muscle Nerve 1994; 17: 969–974
  • Tricarico D, Barbieri M, Franchini C, et al. Effects of mexiletine on ATP sensitive K+ channel of rat skelet al muscle fibres: A state dependent mechanism of action. Br] Pharmacol 1988; 125: 858–864
  • Schwab M, Bauer R, Zwiener U. The distribution of normal brain water content in Wistar rats and its increase due to ischemia. Brain Res 1997; 749: 82–87
  • Agrawal SK, Fehlings MG. Mechanisms of secondary injury to spinal cord axons in vitro: Role of Na(+), Na(+)-K(+)-ATPase, the Na(+)-HH+ exchanger, and the Na(+)-Ca2+ exchanger.
  • Calabresi P, Marfia GA, Centonze D. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in striatal spiny neurons. Stroke 1999; 30: 171 —179
  • Friedman JE, Haddad GG. Anoxia induces an increase in intracellular sodium in rat central neurons in vitro. Brain Res 1994; 663: 329–334
  • Globus MYT, Busto R, Dietrich WD, et al. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and aminobutyric acid studied by intracerebral microdialysis. J Neurochem 1988; 51: 1455–1464
  • Kawase M, Murakami K, Fujimura M, et al. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 1999; 30: 1962–1968
  • Demirpençe E, Caner H, Bavbek M, et al. Antioxidant action of the antiarrhythmic drug mexiletine in brain membranes. Jpn J Pharmacol 1999; 81: 7–11
  • Kaptanoglu E, Caner H, Siirlicii S, et al. Effect of mexiletine on lipid peroxidation and early ultrastructural findings in experimental spinal cord injury. J Neurosurg 1999; 91: 200–204

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.