939
Views
48
CrossRef citations to date
0
Altmetric
Original Article

Thermodynamic and kinetic models for describing microstructure evolution during joining of metals and alloys

Pages 333-367 | Published online: 18 Jul 2013

References

  • R. W. Messier: ‘Joining of advanced materials’, 1993; Stoneham, MA, Butterworth-Heinemann.
  • S. A. David and T. DebRoy: ‘Current issues and problems in welding science’, Science, 1992, 257, 497–502.
  • in ‘ASM handbook’, Vol. 6, ‘Welding, brazing, and soldering’, (ed. D. L. Olson et al); 1993, Materials Park, OH, ASM International.
  • in ‘Welding handbook’, Vols . 1-4, ‘Welding technology, welding processes, materials and applications - Part 1, Materials and applications - Part 2’; 1996, Miami, FL, American Welding Society.
  • Proc. Conf. on ‘Trends in welding research in the United States’, (ed. S. A. David); 1982, Metal Park, OH, American Society for Metals.
  • H. Zhang and J. Senkara: ‘Resistance welding: fundamentals and applications’; 2006, Boca Raton, FL, Taylor and Francis.
  • C. T. Liu, C. L. White and J. A. Horton: ‘Effect of boron on grain boundaries in Ni3A1’, Acta Metall, 1985, 33, 213–229.
  • V. K. Sikka, M. L. SanteIla, P. Angelini, J. Mengel, R. Petrusha, A. P. Martocci and R. I. Pankiw: `Large-scale manufacturing of nickel aluminide transfer rolls for steel austenitizing furnaces', Intermetallics, 2004, 12, 837–844.
  • S. A. David, T. DebRoy and J. M. Vitek: ‘Phenomenological modeling of fusion welding processes’, MRS Bull, 1994, XIX, 29-35.
  • T. Zacharia, J. M. Vitek, J. A. Goldak, T. DebRoy, M. Rappaz and H. K. D. H. Bhadeshia: ‘Modeling of fundamental phenomena in welds’, Model. Simul Mater. Set Eng., 1995, 3, 265–288.
  • O. Grong: ‘Metallurgical modelling of welding’, Materials modeling series; 1994, London, The Institute of Materials.
  • D. Rosenthal: ‘Mathematical theory of heat distribution during welding and cutting’, Weld 1, 1941, 20, 220s-234s.
  • J. A. Goldak and M. Akhlaghi: ‘Computational welding mechanics’; 2005, New York, Springer.
  • D. Radaj: ‘Welding residual stresses and distortion - calculation and measurement’; 2003, Dusseldorf, DVS Verlag.
  • M. F. Ashby and K. E. Easterling: ‘A first report on diagrams for grain growth in welds’, Acta Metall, 1982, 30, 1969-1978.
  • J. C. Ion, K. E. Easterling and M. F. Ashby: ‘A 2nd report on diagrams for microstructure and hardness for heat affected zones in welds’, Acta Metall, 1984, 32, 1949.
  • H. K. D. H. Bhadeshia, L.-E. Svensson and B. Gretoft: ‘A model for the development of microstructure in low-alloy steel (Fe-Mn-Si-C) weld deposits’, Acta Metall, 1985, 33, 1271-1283.
  • B. Buchmayr: ‘Ternary diffusion in dissimilar steel welds’, in ‘Mathematical modeling of weld phenomena’, (ed. H. Cerjak and K. E. Easterling), 227-240; 1993, London, The Institute of Materials.
  • B. F. Carpenter: ‘Phase stability of Fe-Al-Cr-Ni weld metal’, Mater. Sci. Eng. A, 1991, A147, 1-8.
  • in ‘Mathematical modeling of weld phenomena’, (ed. H. Cerjak and K. E. Easterling); 1993, London, The Institute of Materials.
  • S. A. David and J. M. Vitek: ‘Correlation between solidification para-meters and weld microstructures’, Int. Mater. Rev., 1989, 34, 213–245.
  • T. DebRoy and S. A. David: ‘Physical processing in fusion welding’, Rev. Modern Phys., 1995, 67, 85–112.
  • K. Mundra, T. Debroy, T. Zacharia and S. David: ‘Role of thermophysical properties in weld pool modeling’, Weld. 1, 1992, 71, s313–320.
  • A. H. Dilawari, T. W. Eager and J. Szekely: ‘Analysis of heat and fluid flow phenomena in electro slag welding’, Weld 1, 1978, 57, s24–s30.
  • J. Ion and K. E. Easterling: ‘Computer modeling of weld-implant testing’, Mater. Sci. Technol, 1985, 1, 405–411.
  • D. F. Watt, L. Coon, M. Bibby, J. Goldak and C. Henwood: ‘An algorithm for modeling microstructural development in weld heat-affected-zones A. Reaction kinetics’, Acta Metall, 1988, 36, 3029–3035.
  • C. Henwood, M. Bibby, J. Goldak and D. Witt: ‘Coupled transient heat -transfer B. Microstructure weld computations’, Acta Metall, 1988, 36, 3037–3046.
  • J. S. Kirkaldy: ‘Diffusion-controlled phase transformations in steels - theory and applications’, Scand. J. Metall, 1991,20, 50–61.
  • T. Koseki, T. Matsumiya, W. Yamada and T. Ogawa: ‘Numerical modeling of solidification and subsequent transformation of Fe-Cr-Ni alloys’, Metall Mater. Trans. A, 1994, 25A, 1309–1321.
  • S. Kou and Y. H. Wang: ‘Computer simulation of convection in moving arc weld pools’, Metall Trans. A, 1986, 17A, 2271–2277.
  • J. B. Leblond and J. Devaux: ‘A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size’, Acta Metall, 1984, 32, 137–146.
  • F. Matsuda, H. Nakagawa and J. Lee: ‘Numerical analysis of micro-segregation during welding’, Q. J. Jpn Weld Soc., 1991, 9, 85–92.
  • D. L. Olson, S. Liu and G. R. Edwards: ‘Physical metallurgical concerns in the modeling of weld metal transformations’, in ‘Mathematical modeling of weld phenomena’, (ed. H. Cerjak and K. E. Easterling), 89-108; 1993, London, The Institute of Materials.
  • M. Rappaz, S. A. David, J. M. Vitek and L. A. Boatner: ‘Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds’, Metall Trans. A, 1989, 20A, 1125–1138.
  • J. Szekely and G. Oreper: ‘Transient heat and fluid flow phenomena in arc welding’, J. Met., 1983, 35, 49.
  • J. M. Vitek, S. A. Vitek and S. A. David: ‘Numerical modeling of diffusion controlled phase transformations in ternary systems and application to the ferrite to austenite transformation in the Fe-Cr-Ni system’, Metall Mater. Trans. A, 1995, 26A, 2007–2025.
  • N. Yurioka, H. Suzuki, S. Ohshita and S. Saito: ‘Determination of necessary preheating temperature in steel welding’, Weld. 1, 1983, 62, s147–s153.
  • T. Zacharia, S. A. David, J. M. Vitek and T. Debroy: ‘Weld pool development during GTA and laser-beam welding of type 304 stainless steel 1. Theoretical analysis’, Weld 1, 1989,68, s499-s509.
  • T. Zacharia, S. A. David, J. M. Vitek and T. Debroy: ‘Weld pool development during GTA and laser-beam welding of type 304 stainless steel 2. Experimental correlation’, Weld. J., 1989, 68, s510–s520.
  • J. H. Hattel: ‘Integrated modeling in materials and process technology’, Mater. Sci. Technol, 2008, 24, 137–148.
  • Syweld: http://www.esi-group.com/products/welding/sysweld
  • X. L. Chen, X. L. Chen, Z. Yang, A. Nanjundan, N. Chen and J.-J. Janosch: ‘Achieving manufacturing quality and reliability using thru-process simulation’, J. Phys. IV France, 2004, 120, 793–800.
  • Vr weld: available at: http://goldaktec.com/newsandevents.html
  • O. R. Myhr and O. Grong: ‘Utilizing a predictive tool for designing welded aluminum components’, Weld J., 2008, 87, 36–39.
  • EWeldPredictor: http://calculations.ewi.org/vjp/EWeldPredictor.html
  • W. Zhang, J. W. Elmer and T. DebRoy: ‘Integrated modeling of thermal cycles, austenite formation, grain growth and decom-position in the heat affected zone of carbon steel’, Sci Technol. Weld. Join., 2005, 10, 574–582.
  • W. Zhang, T. debroy, T. A. Palmer and J. W. Elmer: ‘Modeling of ferrite formation in a duplex stainless steel weld considering non-uniform starting microstructure’, Acta Mater., 2005, 53,4441–4453.
  • H. K. D. H. Bhadeshia: ‘Thermodynamic analysis of isothermal transformation diagrams’, Met. Sci., 1982, 16, 159–165.
  • N. Saunders and A. P. Miodownik: VALPHAD: calculation of phase diagrams, a comprehensive guide'; 1998, Oxford, Pergamon Press.
  • H. Lukas, S. G. Fries and B. Sundman: ‘Computational thermodynamics: the Calphad method’; 2007, Cambridge, Cambridge University Press.
  • M. Hillert: ‘Phase equilibria: phase diagrams and phase transfor-mations: their thermodynamic basis’; 1998, Cambridge, Cambridge University Press.
  • J. Agren: ‘On the classification of phase transformations’, Scr. Mater., 2002, 46, 893–898.
  • J. W. Christian: ‘The theory of transformations in metals and alloys (Part I + II)’, 3rd edn; 2002, Oxford, Pergamon Press.
  • K. Hack: ‘The SGTE casebook: thermodynamics at work’, Materials modeling series; 1996, London, Institute of Materials.
  • A. T. Dinsdale: ‘SGTE data for pure elements’, Calphad, 1991, 15, 317–425.
  • B. Sundman, B. Jansson and J. O. Andersson: ‘The Thermo-Calc databank system’, Calphad, 1985, 9, 153–190.
  • A. D. Pelton: in ‘Physical metallurgy’, (ed. R. W. Cahn and P. Haasen), 3rd edn, 328; 1983, Amsterdam, Elsevier Science.
  • L. Kaufman and H. Nesor: ‘Calculation of binary phase-diagrams of iron, chromium, nickel and cobalt’, Z. Metallkd, 1973, 64, 249–257.
  • J. O. Andersson, T. Helander, L. Hoglund, P. Shi and B. Sundman: ‘Thermo-Calc and DicTra computational tools for materials science’, Calphad, 2002, 26, 273–312.
  • G. B. Olson: ‘Computational design of hierarchically structured materials’, Science, 1997, 277, 1237-1242.
  • N. Saunders: ‘Phase diagram calculations for high temperature struc-tural materials’, Philos. Trans. Roy. Soc. A, 1995, 351A, 543–561.
  • Z. Guo, N. Saunders, P. Miodownik and J.-P. Schille: ‘Modeling material properties of lead-free solder alloys’, J. Electron. Mater., 2008, 37, 23–31.
  • P. E. A. Turchi, V. Drchal, J. Kudrnovsky, C. Colinet, L. Kaufman and Z.-K. Liu: ‘Application of ab initio and CALPHAD thermodynamics to Mo—Ta—W alloys’, Phys. Rev. B, 2005, 71B, 094206.
  • H. K. D. H. Bhadeshia: ‘Worked examples in the geometry of crystals’: 2001, London, The Institute of Materials.
  • H. K. D. H. Bhadeshia: `Diffusional formation of ferrite in iron and its alloys', Prog. Mater. Set, 1985, 29, 321–386.
  • D. A. Porter and K. E. Easterling: ‘Phase transformations in metals and alloys’: 1992, Boca Raton, FL, CRC Press.
  • M. Enomoto and H. Aaronson: ‘Nucleation kinetics of proeu-tectoid ferrite at austenite grain boundaries in Fe—C—X alloys’, Metall Trans. A, 1986, 17A, 1385–1397.
  • S. S. Babu and H. K. D. H. Bhadeshia: ‘Diffusion of carbon in substitutionally alloyed austenite’, J. Mater. Sci Lett., 1995, 14, 314–316.
  • S. S. Babu, K. Hono and T. Sakurai: ‘Atom-probe field-ion microscopy study of the partitioning of substitutional elements during tempering of low-alloy steel martensite’, Metall Mater. Trans. A, 1994, 25A, 499–508.
  • G. Ghosh and G. B. Olson: ‘Kinetics of fccbcc heterogeneous martensitic nucleation 1. Critical driving force for athermal nucleation’, Acta. Metall Mater., 1994, 42, 3361–3370.
  • G. Ghosh and G. B. Olson: ‘Kinetics of fccbcc heterogeneous martensitic nucleation 2. Thermal activation’, Acta. Metall Mater., 1994, 42, 3371–3379.
  • in `Martensite — a tribute to morris cohen', (ed. G. B. Olson and W. S. Owen); 1992, Materials Park, OH,ASM International.
  • I. Andersen, O. Grong and N. Ryum: ‘Analytical modeling of grain growth in metals and alloys in the presence of growing and dissolving precipitates 2. Abnormal grain growth’, Acta Metall Mater., 1995, 3, 2689–2700.
  • J. Brooks, M. Bases and F. Greulich: ‘Solidification modeling and solid-state transformations in high-energy density stainless-steel welds’, Metall Trans. A, 1991, 22A, 915–926.
  • H. Inoue, T. Koseki, S. Ohkita and T. Tanaka: ‘Effect of solidification on subsequent ferrite to austenite massive transfor-mation in an austenitic stainless-steel weld metal’, ISIJ Int., 1995, 35, 1248–1257.
  • J. M. Vitek, S. A. David, D. J. Alexander, J. R. Keiser and R. K. Nanstad: `Low-temperature aging behavior of type-308 stainless steel weld metal', Acta Metall Mater., 1991, 39, 503–516.
  • J. Sietsma and S. van der Zwagg: ‘A concise-model for mixed phase-transformations in the solid-state’, Acta Mater., 2004, 52, 4143–4152.
  • G. B. Olson, H. K. D. H. Bhadeshia and M. Cohen: ‘Coupled diffusional and displacive transformations’, Acta Metall, 1989, 37, 381–389.
  • S. S. Babu, S. A. David, J. M. Vitek, K. Mundra and T. Debroy: ‘Development of macrostructure and microstructure of carbon-manganese low-alloy steel welds — inclusion formation’, Mater. Set Technol, 1995, 11, 186–199.
  • S. S. Babu and H. K. D. H. Bhadeshia: ‘Transition from bainite to acicular ferrite in reheated Fe—Cr—C weld deposits’, Mater. Set Technol, 1990, 10, 1005–1020.
  • S. J. Jones and H. K. D. H. Bhadeshia: ‘Kinetics of the simultaneous decomposition of austenite into several transforma-tion products’, Acta Mater., 1997, 45, 2911–2920.
  • X. Yu, S. S. Babu, F. Brust and G. Wilkowski: ‘Microstructure characterization and austenite grain growth modeling of the heat affected zone in X70/X100 pipeline steels’, submitted for publica-tion in the Conference Proceedings of Thermec 2009, Berlin, Germany, August 2009, TU-Berlin.
  • M. Rappaz and C. A. Gandin: ‘Probablistic modeling of microstructure formation in solidification processes’, Acta Metall Mater., 1993, 41, 345–360.
  • Y. H. Wei, X. H. Han, Z. B. Dong and L. Yu: ‘Numerical simulation of columnar dendritic grain growth during weld solidification process’, Set Technol Weld Join., 2007, 12, 138–146.
  • V. Pavlyk and U. Dilthey: ‘Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modeling’, Model. Sim. Mater. Sci Eng., 2004, 12, S33–545.
  • R. G. Thiessen and I. M. Richardson: ‘A physically based model for microstructure development in a macroscopic heat-affected zone: grain growth and recrystallization’, Metall Mater. Trans. B, 2006, 37B, 655–663.
  • J. M. Vitek: Unpublished Research, Oak Ridge National Laboratory, 2005.
  • H. Emmerich: ‘The diffuse interface approach in materials science: thermodynamic concepts and applications to phase-field models’: 2003, Berlin, Springer.
  • O. Grong and N. Christensen: ‘Factors controlling MIG weld metal chemistry’, Scand J. Metall, 1983, 12, 155–165.
  • M. Liljas and J. O. Nilsson: ‘Development of commercial nitrogen-rich stainless steels’, Mater. Sci Forum, 1999, 318, 189–200.
  • V. Muthupandi, P. B. Srinivasan, V. Shankar, S. K. Seshadri and S. Sundaresan: ‘Effect of nickel and nitrogen addition on the microstructure and mechanical properties of power beam processed duplex stainless steel (UNS 31803) weld metals’, Mater. Lett., 2005, 59, 2305–2309.
  • S. Hertzman, R. J. Pettersson, R. Blom, E. Kivineva and J. Eriksson: ‘Influence of shielding gas composition and welding parameters on the N-content and corrosion properties of welds in N-alloyed stainless steel grades’, ISIJ Int., 1996, 36, 968–976.
  • S. Hertzman: ‘The influence of nitrogen on microstructure and pro-perties of highly alloyed stainless steels’, ISIJ Int., 2001, 41, 580–589.
  • K. Mundra and T. DebRoy: ‘A general model for partitioning of gases between a metal and its plasma environment’, Metall Mater. Trans. A, 1995, 26A, 149–157.
  • T. A. Palmer and T. DebRoy: ‘Physical modeling of nitrogen partition between the weld metal and its plasma environment’, Weld 1, 1996, 75, s197—s207.
  • S. S. Babu, S. M. Kelly, M. Murugananth and R. P. Martukanitz: ‘Reactive gas shielding during laser surface alloying for produc-tion of hard coatings’, Surf Coat. Technol, 2006, 200, 2663–2671.
  • M. Du Toit and P. C. Pistorious: Nitorgen control during arc welding of stainless steel — Part 1: experimental observations', Weld 1, 2003, 82, 219s-224s.
  • M. Du Toit and P. C. Pistorious: Nitorgen control during arc welding of stainless steel — Part 2: a kinetic model for nitrogen absorption and desorption', Weld. 1, 2003, 82, 231s-237s.
  • A. Gruszczyk: ‘The kinetics of nitrogen absorption by arc-melted Fe—C—Mn-type filler metals’, Weld 1, 2004, 83, 94s-101s
  • R. E. Francis, J. E. Jones and D. L. Olson: ‘Effect of shielding gas oxygen activity on weld metal microstructure of GMA welded microalloyed HSLA steel’, Weld 1, 1990, 69, s408—s415.
  • S. A. Gedeon and T. W. Eager: `Thermochemical analysis of hydrogen absorption in welding', Weld. J., 1990, 69, s264—s271.
  • J. H. Kiefer: ‘Effect of moisture contamination and welding parameters on diffusible hydrogen’, Weld. 1, 1996, 75, s155—s161.
  • K. Mundra, J. M. Blackburn and T. DebRoy: ‘Absorption and transport of hydrogen during gas meta arc welding of low alloy steel’, Set Technol Weld. Join., 1997, 2, 174–184.
  • M. J. Mcnallan and T. DebRoy: ‘Effect of temperature and composition on surface tension in Fe—Ni—Cr alloys containing sulfur’, Metall Trans. B, 1991, 4B, 557–560.
  • C. R. Heiple and J. R. Roper: ‘Mechanism for minor element effect on GTA fusion zone geometry’, Weld 1, 1982, 61, S97–5102.
  • P. Sahoo, T. DebRoy and M. J. McNallan: ‘Surface tension of binary metal — surface active solute systems under conditions relevant to welding metallurgy’, Metall Mater. Trans. B, 1988, 19GB, 483-491.
  • A. Powell: ‘Mathematical modeling of vapor-plume focusing in electron-beam evaporation’, Metall Mater. Trans. A, 2001, 32, 1959–1966.
  • K. Mundra and T. DebRoy: ‘Calculation of weld metal composition change in high-power conduction mode carbon-dioxide laser welded stainless steels’, Metall Mater. Trans. B, 1993, 24B, 145–155.
  • X. He, T. DebRoy and P. W. Fuerschbach: ‘Alloying element vaporization during laser spot welding of stainless steel’, J. Phys. D, 2003, 36D, 3079–3088.
  • J. W. Sowards: ‘Development of a chromium free consumable for joining stainless steels’, PhD thesis, The Ohio State University, Columbus, OH, USA, 2009.
  • F. Bezzo, S. Macchietto and C. C. Pantelides: ‘A general framework for the integration of computational fluid dynamics and process simulation’, Comput. Chem. Eng., 2000, 24, 653–658.
  • T. DebRoy, K. Tankala, W. A. Yarbrough and R. Messier: ‘Role of heat transfer and fluid flow in the chemical vapor deposition of diamond’, J. Appl. Phys., 1990, 68, 2424–2432.
  • M. Oliva-Martinez, M. Pérez-Tello, R. Cabanillas-López, O. Contreras-López, G. Soto-Herrera and F. Castillón-Barraza: 'A computational model for the hot-filament chemical vapor deposition process to produce diamond films', Model. Simul Mater. Set Eng., 2007, 15, 237–261.
  • B. Merci and K. V. Maele: ‘Numerical simulations of full-scale enclosure fires in a small compartment with natural roof ventilation’, Fire Safety 1, 2008, 43, 495–511.
  • D. Hirsch, J. Williams and H. Beeson: ‘Pressure effects on oxygen concentration flammability thresholds of materials for aerospace applications’, J. Test. Eval, 2008, 36, (1), Paper JTE100975.
  • U. Mitra and T. W. Eagar: ‘Slag-metal reactions during welding 1. Evaluation and reassessment of existing theories’, Metall Trans. B, 1991, 22B, 65–71.
  • U. Mitra and T. W. Eagar: ‘Slag-metal reactions during welding 2. Theory’, Metall Trans. B, 1991, 22B, 73–81.
  • U. Mitra and T. W. Eagar: ‘Slag-metal reactions during welding 3. Verification of the theory’, Metall Trans. B, 1991, 22B, 83–100.
  • O. Grong, T. A. Siewert, G. P. Martins and D. L. Olson: ‘A model for the silicon-manganese deoxidation of steel weld metals’, Metall. Trans. A, 1986, 17A, 1797–1807.
  • C. S. Chai and T. W. Eager: ‘Slag-metal equilibrium during submerged arc-welding’, Metall. Trans. B, 1981, 12B, 539–547.
  • T. Lau, G. C. Weatherly and A. Mclean: ‘The sources of oxygen and nitrogen contamination in submerged-arc welding using CaO-A1203 based fluxes’, Weld 1, 1985, 64, s343—s347.
  • M. Zinigrad: ‘Computational methods for development of new welding materials’, Comput. Mater. Set, 2006, 37, 417–424.
  • A. O. Kluken and O. Grong: ‘Mechanisms of inclusion formation in Al—Ti—Si—Mn deoxidized steel weld metals’, Metall Trans. A, 1989, 20A, 1335–1349.
  • R. H. Zhang and D. Fan: ‘Numerical simulation of effects of activating flux on flow patterns and weld penetration in ATIG welding’, Set TechnoL Weld. Join., 2007, 12, 15–23.
  • J. J. Lowke, M. Tanaka and M. Ushio: ‘Mechanisms giving increased weld depth due to a flux’, J. Phys. D, 2005, 38D, 3438–3445.
  • H. Terashima and P. H. M. Hart: ‘Effect of aluminum on C—Mn—Nb steel submerged-arc weld metal properties’, Weld 1, 1984,63, S173—S183.
  • H. Homma, S. Ohkita, S. Matsuda and K. Yamamoto: ‘Improvement of HAZ toughness in HSLA steel by introducing finely dispersed Ti-oxide’, Weld. 1, 1987, 66, S301—S309.
  • F. C. Liao and S. Liu: ‘Effect of deoxidation sequence on carbon manganese steel weld metal microstructures’, Weld. 1, 1992, 71, S94—S 103.
  • G. Thewlis and D. R. Milner: ‘Inclusion formation in arc welding’, Weld 1, 1977, 56, 5281—S288.
  • K. C. Hsieh, S. S. Babu and J. M. Vitek: ‘Calculation of inclusion formation in low-alloy steel welds’, Mater. Set Eng. A, 1996, 215A, 84–91.
  • T. Koseki, S. Ohkita and N. Yurioka: ‘thermodynamic study of inclusion formation in low alloy steel weld metals’, Set Technot Weld. Join., 1997, 2, 65–69.
  • K. Ichikawa, T. Koseki and M. Fuji: ‘Thermodynamic estimation of inclusion characteristics in low alloy steel weld metals’, Set Technot Weld. Join., 1997, 2, 231–235.
  • S. S. Babu, S. A. David, J. M. Vitek, K. Mundra and T. DebRoy: ‘Model for inclusion formation in low alloy steel welds’, Set TechnoL Weld. Join., 1999, 4, 276–284.
  • J. Lehmann, P. Rocabois and H. Gaye: ‘Kinetic model of non-metallic inclusions precipitation during steel solidification’, J. Non-cryst. Solids, 2001, 282, 61–71.
  • T. Hong and T. DebRoy: ‘Time-temperature-transformation diagrams for the growth and dissolution of inclusions in liquid steels’, Ser. Mater., 2001, 44, 847–852
  • T. Hong and T. DebRoy: `Nonisothermal growth and dissolution of inclusions in liquid steels', Metall Mater. Trans. B, 2003, 34B, 267–269.
  • S. S. Babu, R. P. Martukanitz, K. D. Parks and S. A. David: ‘Toward prediction of microstructural evolution during laser surface alloying’, Metall Mater. Trans. A, 2002, 33A, 1189–1200.
  • K. Mundra, T. DebRoy, S. S. Babu and S. A. David: ‘Weld metal microstructure calculations from fundamentals of transport phenomena in the arc welding of low-alloy steels’, Weld. 1, 1997, 76, S163—S171.
  • T. Hong, W. Pitscheneder and T. DebRoy: ‘Quantitative modeling of motion, temperature gyrations, and growth of inclusions in weld pool’, Sci TechnoL Weld Join., 1998, 3, 33–41.
  • T. Hong, T. DebRoy, S. S. Babu and S. A. David: ‘Modeling of inclusion growth and dissolution in the weld pool’, Metall Mater. Trans. B, 2000, 31B, 161–169.
  • M. A. Quintana, J. McLane, S. S. Babu and S. A. David: ‘Inclusion formation in self-shielded flux cored arc welds’, Weld 1, 2001, 80, 98s-105s.
  • M. Sireesha, V. Shankarb, S. K. Albertb and S. Sundaresan: ‘Micro-structural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800’, Mater. Sei. Eng., 2000, 292, 74–82.
  • J. M. Vitek, S.S. Babu and S. A. David: ‘Welding of single-crystal nickel-based superalloys’, in ‘Mathematical modeling of weld phenomena 7’, (ed. H. Cerjak et al), 235-250; 2005, Graz, Technical University of Graz.
  • J. M. Vitek, S. S. Babu, J.-W. Park and S. A. David: ‘Analysis of stray grain formation in single-crystal nickel-based superalloy welds’, in `Superalloys 2004', (ed. K. A. Green et al), 459-466; 2004, Warrendale, PA, The Minerals, Metals and Materials Society.
  • S. N. Banovic, J. N. Dupont and A. R. Marder: ‘Dilution control in gas tungsten arc welding involving super austenitic stainless steels and nickel based alloys’, Metall Mater. Trans. B, 2001, 32B, 1171–1176.
  • C. Beckerman: ‘Modeling of maco-segregation: applications and future needs’, Int. Mater. Rev., 2002, 47, 243–261.
  • W. Kurz and D. J. Fisher: ‘Fundamentals of solidification’, 1998, Enfield, NH, Enfield Publishing and Disribution Company.
  • E. P. George, S. S. Babu, S. A. David and B. B. Seth: ‘IN-939 based superalloys with improved weldability’, Proc. Conf. BALTICA V, Helsinki, Finland, May 2001, VIT.
  • B. B. Seth, E. P. George, S. S. Babu, G. M. Goodwin, S. A. David and C. E. Moyer: `Superalloys with improved weldability for high temperature applications', US patent no. 6284392,4 September 2001.
  • D. F. Susan, C. V. Robino, M. J. Minicozzi and J. N. Dupont: ‘A solidification diagram from Ni—Cr—Mo—Gd alloys estimated by quantitative microstructural characterization and thermal analy-sis’, Metall Mater. Trans. A, 2006, 37A, 2817–2825.
  • J. N. Dupont: ‘Mathematical modeling of solidification paths in ternary alloys: limiting cases of solute redistribution’, Metall. Mater. Trans. A, 2006, 37A, 1937–1947.
  • T. D. Anderson, J. N. Dupont, M. J. Perricone and A. R. Marder: ‘Phase transformations and microstructure evolution of Mo bearing stainless steels’, Metall Mater. Trans. A, 2007, 38A, 671–685.
  • M. J. Perricone and J. N. Dupont: ‘Effect of composition on the solidification behavior of several Ni—Cr—Mo and Fe—Ni—Cr—Mo alloys’, Metall. Mater. Trans. A, 2006, 37A, 1267–1280
  • T. W. Clyne and W. Kurz: Metall Trans. A, 1981, 12A, 965.
  • S. S. Babu, S. A. David, J. M. Vitek and R. W. Reed: ‘Solidification and microstructure modeling of welds in aluminum alloys 5754 and 6111’, Set Technot Weld Join., 2001, 6, 31–40.
  • S. S. Babu, J. M. Vitek, Y. S. Iskander and S. A. David: ‘A new model for prediction of ferrite number of stainless steel welds’, Set Technot Weld Join., 1997, 2, 279–285.
  • T. Koseki, H. Inoue, S. Ohkita and M. Fuji: ‘Numerical modeling of weld solidification of austenitic stainless steels, Proc. 7th Int. Symp. on 'Physical simulation of casting, hot-rolling and welding’, Tsukuba, Japan, January 1997, NRIM, 75-80.
  • T. Koseki, H. Inoue and A. Nogami: ‘Prediction and control of weld solidification insteels and Ni-base alloys’, in ‘Trends in welding research’, (ed. J. M. Vitek et al), 751-760; 1999, Materials Park, OH, ASM-International.
  • S. S. Babu, S. A. David and M. A. Quintana: 'Modeling microstructure evolution in self-shielded flux cored arc welds, Weld. 1, 2001, 80, 91s-97s.
  • J. M. Vitek and S. A. David: ‘Modeling and simulation of microstructure development during weld solidification’, in ‘Mathematical modeling of weld phenomena’, (ed. H. Cerjak), 211-234; 2001, London, Institute of Materials.
  • J. M. Vitek and S. A. David: ‘Prediction of non-equilibrium solidification modes in austenitic stainless steel laser welds’, in ‘Laser materials processing IV’, (ed. J. Mazumder et al), 153-167; 1994, Warrendale, PA, TMS.
  • W. Loser and D. M. Herlach: ‘Theoretical treatment of the solidification undercooled Fe—Cr—Ni melts’, Metall Tran. A, 1992, 23A, 1585–1591.
  • T. Koseki and M. C. Flemings: ‘Solidification of undercooled Fe—Cr—Ni alloys: 3. Phase stability in chill castings’, Metall Mater. Trans. A, 1997, 28A, 2385–2395.
  • S. Fukumoto and W. Kurz: ‘Solidification phase and micro-structure selection maps for Fe—Cr—Ni alloys’, ISIJ Int., 1999, 39, 1270–1279.
  • S. S. Babu, J. W. Elmer, J. M. Vitek and S. A. David: ‘Time-resolved X-ray diffraction investigation of primary weld solidification in Fe—C—Al—Mn steel welds’, Acta Mater., 2002, 50, 4763–4781.
  • S. S. Babu, J. W. Elmer, S. A. David and M. A. Quintana: In-situ observations of nonequilibrium austenite formation during weld solidification of Fe—C—Al—Mn low alloy steel', Proc. Roy. Soc. A, 2002, 458A, 811–821.
  • A. Di Schino, M. G. Mecozzi, M. Barteri and J. M. Kenny: ‘Solidification mode and residual ferrite in low-Ni austenitic stainless steels’, J. Mater. Set, 2000, 35, 375–380.
  • B. Radhakrishnan and R. G. Thompson: ‘A model for the formation and solidification of grain boundary liquid in the heat-affected zone (HAZ) of welds’, Metall. Trans. A, 1992, 23A, 1783–1799.
  • C. Ziang and Z. K. Liu: ‘Computational investigation of constitu-tional liquation in Al—Cu alloys’, Acta Mater., 2003, 51,4447–4459.
  • O. A. Ojo and M. C. Chaturvedi: ‘On the role of liquated g’ precipitates in weld heat affected zone micro-fissuring of a nickel-based superalloy', Mater. Sci. Eng. A, 2005, A403, 77-86.
  • F. Tancret: `Thermo-Calc and Dictra simulation of constitutional liquation of gamma prime (y') during welding of Ni base superalloys', Comput. Mater. Set, 2007, 41, 13–19.
  • S. S. Babu, W. Peterson and M. L. Santella: ‘Modeling resistance spot welding electrode life’, Proc. Sheet Metal Welding Conf. XI, Sterling Heights, MI, USA, May 2004, American Welding Society.
  • Z. Feng, T. Zacharia and S. A. David: ‘Thermal stress development in a nickel based superalloy during weldability test’, Weld. 1, 1997, 76, s470—s483.
  • Z. Feng, S. A. David, T. Zacharia and C. L. Tsai: ‘Quantification of thermomechanical conditions for weld solidification cracking’, Set Technot Weld. Join., 1997, 2, 11–19.
  • J. W. Park, J. M. Vitek, S. S. Babu and S. A. David: ‘Stay grain formation, thermomechanical stress and solidification cracking in single crystal nickel base superalloy welds’, Set Technot Weld. Join., 2004,9, 472–482.
  • D. Dye, O. Hunziker, and R. C. Reed: ‘Numerical analysis of the weldability of superalloys’, Acta Mater., 2001, 49, 683–697.
  • ‘Hot cracking phenomena in welds’, (ed. T. Bollinghaus and H. Herold), 185-245; New York, Springer.
  • S. S. Babu, S. A. David, J. W. Park and J. M. Vitek: ‘Joining of nickel base superalloy single crystals’, Set Technot Weld Join., 2004, 9, 1–12.
  • J. M. Vitek: ‘The effect of welding conditions on strain grain formation in single crystal welds — theoretical analysis’, Acta Mater., 2005, 53, 53–67.
  • S. Mokadem: ‘Laser repair of superalloy single crystals with varying substrate orientations’, Metall Mater. Trans. A, 2007, 38A, 1500–1510.
  • T. Koseki and H. Inoue: ‘Equiaxed solidification of steel nucleating on titanium nitride’, J. Jpn Inst Met, 2001,65, 644–651.
  • A. C. Hall and C. V. Robino: ‘Association of microstructural features and rippling phenomenon in 304 stainless steel gas tungsten arc welds’, Set Technot Weld Join., 2004, 9, 103–108.
  • X. He, P. W. Fuerschbach and T. DebRoy: ‘Heat transfer and fluid flow during laser spot welding of 304 stainless steels’, J. Phys. D, 2002, 36D, 1388–1398
  • J. Lacaze, S. Tierce, M.-C. Lafont, Y. Thebault, N. Pébere, G. Mankowski, C. Blanc, H. Robidou, D. Vaumousse and D. Daloz: ‘Study of the microstructure resulting from brazed aluminum materials used in heat exchangers’, Mater. Sci. Eng. A, 2005, A413-414, 317-321.
  • S. Tierce, N. Pébere, C. Blanc, G. Mankowski, H. Robidou, D. Vaumousse and J. Lacaze: ‘Solidification and phase transfor-mations in brazed aluminum alloys used in automotive heat exchangers’, Int. J. Cast Met. Res., 2005, 18, 370–376.
  • K. Saida, W. Song and K. Nishimoto: ‘Laser brazing of alloy 600 with precious filler metals’, Set Technoi Weld Join., 2006, 11, 694–700.
  • C. E. Campebll and W. J. Boetinger: ‘Transient liquid-phase bonding in the Ni—Al—B system’, Metall. Mater. Trans. A, 2000, 31A, 2835–2847.
  • I. Ohnuma, M. Miyashita, K. Anzai, X. J. Liu, H. Ohtani, R. Kainuma and K. Ishida: ‘Phase equilibria and the related properties of Sn—In based micro-soldering alloys’, J. Electron. Mater., 2000, 29, 1113–1121.
  • K. Moon, U. Kattner and C. Handweker: ‘The effect of Bi contamination on the solidification beavior of Sn—Pb solders’, J. Electron. Mater., 2007, 36, 676–681.
  • I. Ohnuma, M. Miyashita, K. Anzai, X. J. Liu, H. Ohtani, R. Kainuma and K. Ishida: ‘Phase equilibria and the related properties of Sn—Ag—Cu based Pb-free solder alloys’, J. Electron. Mater., 2000, 29, 1137–1144.
  • S. W. Yoon and H. M. Lee: ‘A thermodynamic study of phase equilibria in the Sn—Bi—Pb solder system’, Calphad, 1998,22, 167–178.
  • G. Ghosh: ‘Thermodynamic modeling of the Palladium-Lead-Tin system’, Metall. Mater. Trans. A, 1999, 30A, 5–18.
  • G. Ghosh: ‘Thermodynamic modeling of the nickel—lead—tin system’, Metall. Mater. Trans. A, 1999, 30A, 1481–1494.
  • E. Zoro: C. Servant and B. Legendre: ‘Thermodynamic assess-ment of the Ag—Au—Bi and Ag—Au—Sb systems’, J. Therm. Anal. Calorim., 2007, 90, 347–353.
  • N. Molans, K. C. Hari Kumar and P. Wollants: ‘Thermodynamic optimization of the lead-free solder system Bi—In—Sn—Zn’, J. Alloys Compd, 2003, 360, 98–106.
  • I. Ohnuma, X. J. Liu, H. Ohtani and K. Ishida: ‘Thermodynamic database for phase diagram in micro-soldering alloys’, J. Electron. Mater., 1999,28, 1164–1171.
  • I. Ohnuma, M. Miyashita, X. J. Liu, H. I. Ohtani and K. Ishida: ‘Phase equilibria and thermodynamic properties of Sn—Ag based Pb-free solder alloys’, IEEE Trans. Electron. Packag. Manufact., 2003, 26, 84–89.
  • U. R. Kattner and C. A. Handwerer: ‘Calculation of phase equilibria in candidate solder alloys’, Z. Metallkd, 2001, 92, 740–746.
  • R. Arroyave and T. W. Eager: ‘Metal substrate effects on the thermo-chemistry of acive brazing interfaces’, Acta Mater., 2003, 51, 4871–4880.
  • H. Yu and J. K. Kivilahti: ‘Nucleation kinetics and solidification temperatures of SnAgCu interconnections during reflow process’, IEEE Trans. Compon. Packag. Technot, 2006, 29, 778–786.
  • D. Henderson, T. Gosselin, A. Sarkhel, S. K. Kang, W. Choi, D. Shih, C. Goldsmith and K. J. Puttlitz: ‘Ag3Sn plate formation in the solidification of near ternary eutectic Sn—Ag—Cu alloys’, J. Mater. Res., 2002, 17, 27725–2778.
  • G. Ghosh and Z. K. Liu: 'Modeling of the atomic transport kinetics in high-lead solders, J. Electron. Mater., 1998, 27, 1362–1366.
  • G. Ghosh: ‘Dissolution and interfacial reactions of thin-film Til Ni/Ag metallizations in solder joints’, Acta Mater., 2001, 49, 2609–2624.
  • G. Ghosh: ‘Reactive interdiffusion between a lead-free solder and Ti/Ni/Ag thin film metallizations’, J. Electron. Mater., 2004, 33, 229–240.
  • G. Ghosh: ‘A comparative study of the kinetics of interfacial reaction between eutectic solders and Cu/Ni/Pd metallization’, J. Electron. Mater., 2000, 29, 1182–1193.
  • M. Schaefer: ‘A numerical method for predicting intermetallic layer thickness developed during the formation of solder joints’, J. Electron. Mater., 1996, 25, 992–1003.
  • W. K. Choi and H. M. Lee: ‘Prediction of primary intermetallic compound formation during interfacial reaction between Sn-based solder and Ni substrate’, Scr. Mater., 2002, 46, 777–781.
  • M. G. Cho, S. K. Kang, D. Y. Shih and H. M. Lee: ‘Effect of minor additions of Zn on interfacial reactions of Sn—Ag—Cu and Sn—Cu solders with various Cu substrates during thermal aging’, J. Electron. Mater., 2007, 36, 1501–1509.
  • G. Ghosh: ‘Interfacial reaction between multicomponent lead-free solders and Ag, Cu, Ni and Pd subtrates’, J. Electron. Mater., 2004, 33, 1080–1091.
  • T. Laurilla, T. Mattila, V. Vuorinen, J. Karppinen, J. Li, M. Sippola and J.K. Kivilahti: ‘Evolution of microstructure and failure mechanism of lead free solder interconnections in power cycling and thermal shock tests’, Mkroelectron. Rehab., 2007, 47, 1135–1144.
  • R. Picha, J. Vrestal and A. Kroupa: ‘Prediction of alloy surface tension using a thermodynamic database’, Comput. Coupt Phase Diagr. Thermochem., 2004, 28, 141–146.
  • Z. Guo, N. Saunders, P. Miodownik and J.-P. Schillé: ‘Modeling of material properties of lead-free solder alloys’, J. Electron. Mater., 2008, 37, 23–31.
  • F. Gao, H. Nishikawa and T. Takemoto: ‘Additive effect of kirkendall void formation in Sn-3.5Ag solder joints on common substrates’, J. Electron. Mater., 2008, 37, 45–50.
  • I. Dutta: ‘A constitutive model for creep of lead-free solders undergoing strain-enhanced microstructural coarsening: a first report’, J. Electron. Mater., 2003, 4, 201–207.
  • W. K. Choi, W. K. Choi, J. H. Kim and S. W. Jeong: 'Interfacial microstructure and joint strength of Sn-3.5Ag—X (X Cu, In and Ni) solder joint, J Mater. Res., 2002, 17, 43–51.
  • J. S. Kirkaldy: ‘Prediction of alloy hardenability from thermo-dynamic and kinetic data’, Metall. Trans., 1973, 4, 2327–2333.
  • J. S. Kirkaldy and E. A. Baganis: ‘Thermodynamic prediction of Ae3 temperature of steels with additions of Mn, Si, Ni, Cr, Mo, and Cu’, Metall. Mater. Trans. A, 1978, 9A, 495–501.
  • H. Shercliff and M. Ashby: ‘A Process model for age hardening of aluminum alloys 1. The model’, Acta Metall. Mater., 1990, 38, 1789–1802.
  • H. Shercliff and M. Ashby: ‘A process model for age hardening of aluminum alloys 1. Applications of the model’, Acta Metall. Mater., 1990, 38, 1803–1812.
  • S. Malinov, Z. Guo, W. Sha and A. Wilson: ‘Differential scanning calorimetry study and computer modeling of Pat phase transformation in Ti-6A1-4V alloys’, Metall. Mater. Trans. A, 2001, 32A, 879–887.
  • S. Malonov and W. Sha: ‘Modeling thermodynamics, kinetics and phase transformation morphology while heat treating titanium alloys’, JOM, 2005, 57, 42–45.
  • O. R. Myhr and O. Grong: ‘Process modeling applied to 6082-T6 aluminum weldments 1: Reaction kinetics’, Acta. Metall. Mater., 1991, 39, 2693–2702.
  • O. R. Myhr and O. Grong: ‘Process modeling applied to 6082-T6 aluminum weldments 1: reaction kinetics’, Acta Metall. Mater., 1991, 39, 2703–2708.
  • S. M. Kelly: ‘Thermal and Microstructure modeling of metal deposition processes with application to Ti6A14V’, PhD thesis, Virginal Polytechnic Institute and State University, Blacksburg, VA, USA, 12 November 2004.
  • S. A. David and S. S. Babu: ‘Modeling microstructure develop-ment in weld metals’, Trans. Ind. Instit. Met., 1997, 50, 591–602.
  • G. N. Haidemenopoulos: ‘Coupled thermodynamic/kinetic ana-lysis of diffusional transformation during laser hardening and laser welding’, J. Alloys Compd, 2001, 320, 302–307.
  • R. Lagneborg, T. Siwecki, S. Zajac and B. Hutchinson: ‘The role of vanadium in microalloyed steels’, Scand J. Metall, 1999,28, 186–241.
  • J. M. Vitek, E. Kozeschnik and S. A. David: ‘Simulating the ferrite to austenite transformation in stainless steel welds’, Calphad, 2001, 25, 217–230.
  • J. R. Yang and H. K. D. H. Bhadeshia: ‘Re-austenitization experiments on some high strength steel weld deposits’, Mater. Set Eng. A, 1989, A118, 155-170.
  • L. Li, B. de Cooman, R.-D. Liu, J. Vleugels, M. Zhang and W. Shi: ‘Design of TRIP steel with high welding and galvanizing performance in light of thermodynamics and kinetics’, J. Iron Steel Res. Int., 2007, 14, 37–41.
  • L. Li, P. Wollants, Z. Y. Xu, B. C. de Cooman and X. D. Zhu: ‘Effects of alloying element on the concentration profile of equilibrium phases in transformation induced plasticity steel’, J. Mater. Set Technol, 2003, 19, 273–277.
  • N. Kaputska, C. Conrardy, S. Babu and C. Albright: “Effect of GMAW process and material conditions on DP 780 and TRIP 780 welds', Weld. J., 2008, 87, 135–149.
  • A. Saha and G. B. Olson: ‘Computer aided design of transforma-tion toughened blast resistant naval hull steels: part I’, J. Computer-aided Mater. Design, 2007, 14, 177–200.
  • J. W. Elmer, T. A. Palmer, W. Zhang, B. Wood and T. DebRoy: ‘Kinetic modeling of phase transformations occurring in the HAZ of C—Mn steel welds based on direct observations’, Acta Mater., 2003, 51, 3333–3349.
  • S. Hertzman, B. Brolund and P. J. Ferreira: ‘An experimental and theoretical study of heat affected zone austenite formation in three duplex stainless steels’, Metall Mater. Trans. A, 1997, 28A, 277–285.
  • H. Lee, C. H. Yoo and H. M. Lee: ‘Effect of tungsten addition on simulated heat affected zone toughness in 25%Cr base super duplex stainless steels’, Mater. Sci. Technol, 1998, 14, 54–60.
  • S. S. Babu, G. M. Goodwin, R. J. Rohde and B. Sielen: ‘Effect of boron on the microstructure of low-carbon steel resistance seam welds’, Weld. 1, 1998, 77, 2495–2535.
  • T. A. Palmer, J. W. Elmer and S. S. Babu: ‘Observations of ferrite/ austenite transformations in the heat affected zone of 2205 duplex stainless steel spot welds usng time-resolved X-ray diffraction’, Mater. Sei. Eng. A, 2004, A374, 307-321.
  • O. M. Barabash, J. A. Horton, S. S. Babu, J. M. Vitek, S. A. David, J. W. Park, G. E. Ice and R. I. Barabash: ‘Evolution of dislocation structure in the heat-affected-zone of a nickel based single crystal’, J. Appl. Phys., 2004, 96, 3673–3679.
  • S. S. Babu, M. K. Miller, J. M. Vitek and S. A. David: ‘Characterization of the microstructure evolution in a nickel base superalloy during continuous cooling conditions’, Acta Mater., 2001, 49, 4149–4160.
  • S. S. Babu, S. A. David. J. M. Vitek and M. K. Miller: ‘Atom probe field ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds’, J. Phys. IV, 1996,6, C5-253—05-258.
  • S. S. Babu, S. A. David and M. K. Miller: `Microstructural development in PWA-1480 electron beam welds — an atom probe field ion microscopy study', AppL Surf Set, 1996,94195, 280–287.
  • J. P. Simmons, Y. H. Wen, C. Shen and Y. Z. Wang: `Microstrucutural development involving nucleation and growth phenomena simulated with phase field method', Mater. Set Eng. A, 2004, A365, 136-143.
  • C. L. Sudbrack: `Deceomposition behavior in model Ni—Al—Cr—X superalloys; temporal evolution and compositional pathways on a nanoscale', PhD thesis, Northwestern University, Evanston, IL, USA, 2004.
  • R. Nandan, T. DebRoy and H. K. D. H. Bhadeshia: ‘Recent advances in friction stir welding — process, weldment structure and properties’, Progr. Mater. Set, 2008, 53, 980–1023.
  • H. Shercliff, M. J. Russell, A. Taylor and T. L. Dickerson: ‘Microstructure modeling in friction stir welding of 2000 series aluminum alloys’, Mecaniq. Indust., 2005, 6, 25–35.
  • Y. Zhang, S. S. Babu, P. Zhang, E. A. Kenik and G. S. Daehn: ‘Microstructure characterization of magnetic-pulse welded AA 6061-T6 by electron backscattered diffraction,’ Set Technol Weld. Join., 2008, 13, 467–471.
  • G. D. Janaki Ram, C. Robinson, Y. Yang and B. E. Stucker: ‘Use of ultrasonic consolidation for fabrication of multi-material structures’, Rapid Prototyp. 1, 2007, 13, 226–235.
  • R. C. Reed and H. K. D. H. Bhadeshia: ‘A model for multipass welds’, Acta Metall Mater., 1994, 42, 3663–3678.
  • R. C. Reed: ‘The Characterization and modeling of multipass weld heat-affected zones’, PhD thesis, University of Cambridge, Cambridge, UK, 1990.
  • G. Oertelt, S. S. Babu, S. A. David and E. A. Kenik: ‘Effect of thermal cycling on friction stir welds of 2195 aluminum alloy’, Weld. J., 2001, 80, 71s-79s.
  • N. Kamp, A. Sullivan and J. D. Robson: ‘Modeling of friction stir welding of 7XXX aluminum alloys’, Mater. Set Eng., 2007, 466, 246–255.
  • G. M. D. Cantin, S. A. David, W. M. Thomas, E. Lara-Curzio and S. S. Babu: ‘Friction skew-stir welding of lap joints in 5083-0 aluminum’, Set Technot Weld. Join., 2005, 10, 268–280.
  • L.-E. Svensson, B. Gretoft and H. K. D. H. Bhadeshia: ‘Computer aided design of electrodes for manual metal arc welding’, Proc. 1st Int. Conf. on ‘Computer technology in welding’, 113-122; 1986, Abington, The Welding Institute.
  • J. R. Yang and H. K. D. H. Bhadeshia: ‘Thermodynamics of the acicular ferrite transformation in alloy-steel weld deposits’, Proc. Conf. on ‘Advances in welding science and technology’, 187-191; 1987, Materials Park, OH, ASM.
  • M. Strangwood and H. K. D. H. Bhadeshia: ‘The mechanism of acicular ferrite formation in steel weld deposits’, Proc. Conf. on ‘Advances in welding science and technology’, 209-213; 1987, Materials Park, OH, ASM.
  • S. S. Babu and H. K. D. H. Bhadeshia: ‘Mechanism of the transition from bainite to acicular ferrite’, Mater. Trans. Jpn Instit. Met., 1991, 32, 679–688.
  • S. S. Babu and H. K. D. H. Bhadeshia: ‘Transition from bainite to acicular ferrite in reheated Fe—Cr—C weld deposits’, Mater. Set Technol, 1990, 6, 1005–1020.
  • S. S. Babu: ‘Acicular ferrite and bainite in Fe—Cr—C weld deposits’, PhD thesis, University of Cambridge, Cambridge, UK, 1990.
  • S. S. Babu, J. M. Vitek and S. A. David: ‘Science based design of weld metal microstructure’, Trans. JWRT 2003, 32, 97–105.
  • S. S. Babu: ‘The mechanism of acicular ferrite in weld deposits’, Curr. Opin. Solid State Mater. Sci., 2004, 8/3-4, 267-278.
  • M. Chandrasekharaiah, G. Dubben and B. H. Kolster: 'An atom-probe study of retained austenite in ferritic weld metal, Weld. 1, 1992, 71, s247—s251.
  • E. Keehan, L. Karlsson, H.-P. Andrén and H. K. D. H. Bhadeshia: ‘New developments with C—Mn—Ni high strength steel weld metals, Part A — microstructure’, Weld. 1, 2006, 85, 200s-210s.
  • E. Keehan, L. Karlsson, H.-O. Andrén and H. K. D. H. Bhadeshia: ‘New developments with C—Mn—Ni high strength steel weld metals, Part B — mechanical properties’, Weld. 1, 2006, 85, 218s-224s.
  • E. Keehan, L. Karlsson and H.-O. Andrén: ‘Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals Part 1 — effect of nickel content’, Sci. Technol Weld. Join., 2006, 11, 1–8.
  • E. Keehan, L. Karlsson and H.-O. Andrén: ‘Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals Part 2 — impact toughness gain resulting from manganese reductions’, Set Technot Weld Join., 2006, 11, 9–18.
  • E. Keehan, L. Karlsson and H.-O. Andrén: ‘Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals Part 3 — increased strength resulting from carbon additions’, Set Technot Weld. Join., 2006, 11, 19–24.
  • H. K. D. H. Bhadeshia, E. Kaen, L. Karlsson and H. O. Andrén: ‘Coalesced bainite’, Trans. Ind. Instit. Met., 2006, 15, 689–694.
  • H. K. D. H. Bhadeshia: ‘Reliability of weld microstructure and property calculations’, Weld 1, 2004, 83, 237s-243s.
  • P. Hofer, M. K. Miller, S. S. Babu, S. A. David and H. Ceijak: ‘Atom probe field ion microscopy investigation of boron containing martensitic 9% Cr steel’, Metall Mater. Trans. A, 2000, 31A, 975–984.
  • D. Cole and H. K. D. H. Bhadeshia: ‘Design of creep-resistance steel welds’, In ‘Mathematical modeling of weld phenomena V’, (ed. H. Cerjak and H. K. D. H. Bhadeshia), 431-448; 2001, London, Institute of Materials,
  • H. K. D. H. Bhadeshia: ‘Neural networks in materials science’, ISIJ Int., 1999, 39, 966–979.
  • J. O. Nilsson, T. Huhtala, P. Jonsson, L. Karlsson and A. Wilson: ‘Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper’, Metall Mater. Trans. A, 1996, 27A, 2196–2208.
  • H. Sieurin and R. Sandström: ‘Sigma phase precipitation in duplex stainless steel 2205’, Mater. Sci. Eng, 2007, 444, 271–276.
  • H. Sieurin and R. Sandstorm: ‘Austenite reformation in the heat-affected zone of duplex stainless steels’, Mater. Sci. Eng. A, 2006, A418, 250-256.
  • A. J. Ramirez, S. D. Brandi and J. C. Lippold: ‘Secondary austenite and chromium nitride precipitation in simulated heat-affected zones of duplex stainless steels’, Sci. Technol Weld. Join., 2004, 9, 301–313.
  • J. M. Vitek, S. A. David, D. J. Alexander, J. R. Keiser and R. K. Nanstad: `Low-temperature aging behavior of type-308 stainless steel weld metal', Acta Metall Mater., 1991, 39, 503–516.
  • F. Danoix and P. Auger: ‘Atom probe studies of the Fe—Cr system and stainless steels aged at intermediate temperature: a review’, Mater. Charact., 2000, 44, 177–201.
  • V. Jan, J. SopouSek and R. Foret: ‘Weld Joint simulations of heat-resistant steels’, Arch. Metall. Mater., 2004, 49, 469–480.
  • T. Helander, H. C. M. Andersson and M. Oskarsson: ‘Structural changes in 12-2.25 Cr weldments — an experimental and theoretical approach’, Mater. High Temper., 2000, 17, 389–396.
  • S. S. Babu and V. K. Sikka: Unpublished research, Oak Ridge National Laboratory, 2002.
  • S. S. Babu, S. A. David, J. M. Vitek and M. K. Miller: ‘Phase stability and atom probe field ion microscopy of Type 308 CRE stainless steel weld metal’, Metall Mater. Trans. A, 1996, 27A, 763–774.
  • W. D. Hopfe and J. E. Morral: ‘Zigzag diffusion paths in multiphase diffusion couples’, Acta. Metal. Mater., 1994,42, 3887–3894.
  • A. Engstrom, J. E. Morral and J. Agren: ‘Computer simulations of Ni—Cr—Al multiphase diffusion couples’, Acta Mater., 1997, 45, 1189–1199.
  • K. Wu, J. Morral and Y. Wang: ‘Horns on diffusion paths in multiphase diffusion couples’, Acta Mater., 2006, 54, 5501–5507.
  • H. Larsson and A. Engstrom: ‘A homogenization approach to diffusion simulations applied to at + y Fe—Cr—Ni diffusion cou-ples’, Acta Mater., 2006, 54, 2431–2439.
  • T. J. Nidam, L. Jeurgens, J. Chen and W. Sloof: ‘On the microstructure of the initial oxide grown by controlled annealing and oxidation on a NiCoCrAY bond coating’, Oxid Met., 2005, 64, 355–377.
  • S. S. Babu, E. D. Specht, M. L. Santella. G. E. Ice and S. A. David: In-situ observations of oxidation and phase stability in cast nickel base intermetallic alloys', Metall. Mater. Trans. A, 2005, 37A, 195–205.
  • R. F. Tylecote: ‘The solid phase welding of metals’; 1968, New York, Martin's Press.
  • A. A. Shiradzi: ‘Diffusion bonding aluminum alloys and composites — new approaches and modeling’, PhD thesis, University of Cambridge, Cambridge, UK, 1997.
  • A. Leenaers, C. Detavernier and S. Van den Berghe: ‘The effect of silicon on the interaction between metallic uranium and alumi-num: a 50 year long diffusion experiment’, J. Nucl. Mater., 2008, 381, 242–248.
  • D. L. Joslin, D. S. Easton, C. T. Liu, S. S. Babu and S. A. David: ‘Processing of Fe3A1 and FeAl alloys by reaction synthesis’, Intermetallics, 1995, 3, 467–481.
  • P. Pareige, K. F. Russell, R. E. Stoller and M. K. Miller: ‘Influence of long-term thermal aging on the microstructure evolution of nuclear reactor pressure vessel materials: an atom probe study’, J. Nucl. Mater., 1997, 250, 176–183.
  • J. Wong, T. Ressler and J. W. Elmer: ‘Dynamics of phase transformations and microstructure evolution in carbon-manga-nese steel arc welds using time-resolved synchrotron X-ray diffraction’, J. Synchr. Radiat., 2003, 10, 154–167.
  • J. W. Elmer, J. Wong and T. Ressler: ‘Spatially resolved X-ray diffraction mapping of phase transformations in the heat-affected-zone of carbon manganese steel arc welds’, Metall Mater. Trans. A, 2001, 32A, 1175–1187.
  • J. W. Elmer and T. A. Plamer: 'In-situ phase mapping and direct observations of phase transformations during arc welding of 1045 steel', Metall Mater. Trans. A, 2006, 37A, 2171–2182.
  • J. W. Elmer, T. A. Plamer and J. Wong: In-situ observations of phase transitions in Ti-6A1-4V alloy welds using spatially resolved X-ray diffraction', J. Appl. Phys., 2003, 93, 1941–1947.
  • J. W. Elmer, T. A. Palmer, S. S. Babu, W. Zhang and T. DebRoy: ‘Phase transformation dynamics during welding of Ti-6A1-4V’, J. Appl. Phys., 2004, 95, 8327–8339.
  • J. W. Elmer, T. A. Palmer, S. S. Babu, W. Zhang and T. DebRoy: ‘Direct observation of austenite, bainite, and martensite forma-tion during arc welding of 1045 steel using time-resolved X-ray diffraction’, Weld 1, 2004, 83, 244s-253s.
  • J. W. Elmer, T. A. Palmer, S. S. Babu, W. Zhang and T. DebRoy: ‘Time resolved X-ray diffraction observations of phase transfor-mations in transient arc welds’, Sci. Technot Weld. Join., 2008, 13, 265–277
  • J. W. Elmer: ‘A new path forward for understanding micro-structural evolution durin welding’, Weld 1, 2008, 87, 149s-166s.
  • A. Kromm and T. Kannengiesser: 'In-situ-phase analysis using synchrotron radition of low-transformation temperature (LTI) weld-ing material', Proc. IIW Int. Cong., 2nd Latin America Cong., 3CXXIV Brazilian Welding Cong., Sao Paulo, Brazil, May 2008, ABS.
  • M. Yonemura, T. Osuki, H. Terasaki, Y. Komizo, M. Sato and A. Kitano: 'In-situ observation for weld solidification in stainless steels using time-resolved X-ray diffraction', Mater. Trans., 2006, 47, 310–316.
  • W. Woo, Z. Feng, X.-L. Wang, D. W. Brown, B. Clausen, K. An, H. Choo, C. R. Hubbard and S. A. David: In-situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminum alloy', Set Technol Weld Join., 2007, 12, 298–303.
  • T. Schenk, I. M. Richardson, M. Kraska and S. Ohnimus: ‘Non-isothermal thermomechanical metallurgical model and its applica-tion to welding simulations’, Sci. Technot Weld. Join., 2009, 14, 152–160.
  • S. S. Babu and H. K. D. H. Bhadeshia: ‘Stress and the acicular ferrite transformation’, Mater. Set Eng. A, 1992, A156, 1-9.
  • Y. Fan, Z. S. Yang, P. Chen, K. Egland and L. Yao: ‘Investi-gation of effect of phase transformations on mechanical behavior of AISI 1010 steel in laser forming’, Trans. ASME, 129, 110-116.
  • Ph. P. Darcis, H. Katsumoto, M. C. Payares-Asprino, S. Liu and T. A. Siewert: ‘Cruciform fillet welded joint fatigue strength improvements by wed metal phase transformations’, Fatig. Fract. Eng. Mater. Struct., 2008, 31, 125–136.
  • J. Eckerlid, T. Nilsson and L. Karlsson: ‘Fatigue properties of longitudinal attachments welded using low transformation tem-perature filler’, Set Technot Weld Join., 2003, 8, 353–359.
  • J. A. Francis, H. K. D. H. Bhadeshia and P. J. Withers: ‘Welding residual stresses in ferritic power plant steels’, Mater. Set Technot, 2006, 23, 1009–1020.
  • Z. Yang and J. W. Ludewig: ‘Virtual welded-joint design integrating advanced materials and processing technologies’, Department of Energy Project Report, project period: 1 October 2001 to 31 March 2005.
  • H. J. Stone, H. K. D. H. Bhadeshia and P. J. Withers: 'In situ monitoring of weld transformations to control weld residual stresses', Mater. Sci. Forum, 2008, 571-572, 393-398.
  • D.-Q. Wang, S. S. Babu, E. A. Payzant, P. G. Radaelli and A. C. Hannon: In-situ characterization of y/y' lattice stability in a nickel base superalloy by neutron diffraction', Metall Mater. Trans. A, 2001, 32A, 1551–1552.
  • S. S. Babu, E. A. Payzant and D. W. Brown: ‘Interaction of stress on phase stability in a single crystal nickel base superalloys’, LANL SMARTS Beamline report, 2005.
  • B. Alexandrov and J. Lippold: ‘A new methodology for studying phase transformations in high strength steel weld metal’, Proc. Conf. on ‘Trends in welding research’, (ed. S. A. David et al), 975-980; 2007, Materials Park, OH, ASM International.
  • J. Ronda and G. J. Oliver: ‘Consistent thermo-mechano-metallurgical model of welded steel with unified approach to derivation of phase evolution laws and transformation induced plasticity’, Comput Methods Appl. Mech. Eng., 2000, 189, 361–417.
  • J. Risso, A. Cardona and A. Anca: ‘Computation of stress and strain evolution during heat-treatment of work rolls’, J. Appl. Mech., 2006, 73, 1045–1053.
  • S. H. Lalam, H. K. D. H. Bhadeshia and D. J. C. MacKay: ‘Esti-mation of mechanical properties of ferritic steel welds —part 1: yield and tensile strength’, Sci. Technol Weld Join., 2000, 5, 135–147.
  • S. H. Lalam, H. K. D. H. Bhadeshia and D. J. C. MacKay: ‘Estimation of mechanical properties of ferritic steel welds — part 2: elongation and Charpy toughness’, Sci. Technol Weld. Join., 2000, 5, 149–160.
  • W. Zhang, S. S. Babu, W. Gan and S. P. Khurana: ‘Automatic weld modeling based on finite element analysis and high performance computing’, Proc. AWS Ann. Meet., Chicago, IL, USA, November 2007, AWS.
  • A. Pittner, D. WeiB, C. Schwenk and M. Rethmeier: ‘Methodology to improve the applicability of welding simulation — review’, Sci. Technol Weld. Join., 2008, 13, 496–508.
  • S. S. Babu, G. Sonnenberg, C. Schwenk, J. Goldak, H. Porzner, S. P. Khurana, W. Zhang and J. L. Gayler: ‘In pursuit of standards for computational weld mechanics — input is sought from welding and joining community’, Weld J., In press.
  • `V&V 10 — 2006 guide for verification and validation in computational solid mechanics', ASME.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.