1,305
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Molecular targeted therapy in acute myeloid leukemia

&
Pages s59-s62 | Published online: 12 Nov 2013

References

  • Dohner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al.. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.
  • Schiffer CA. Hematopoietic growth factors and the future of therapeutic research on acute myeloid leukemia. N Engl J Med. 2003;349(8):727–9.
  • Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109(2):431–48.
  • Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, et al.. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.
  • Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al.. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35.
  • Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, http://www.ncbi.nlm.nih.gov/pubmed?term = %22Carroll%20AJ%22%5BAuthor%5D et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–9.
  • Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, et al.. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114(14):2984–92.
  • Cortes J, Foran J, Ghirdaladze D, DeVetten MP, Zodelava M, Holman P, et al.. AC220, a potent, selective, second generation FLT3 receptor tyrosine kinase (RTK) Inhibitor, in a first-in-human (FIH) phase 1 AML study. Blood. 2009;114(22):264.
  • Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X, et al.. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184–98.
  • Crump M, Hedley D, Kamel-Reid S, Leber B, Wells R, Brandwein J, et al.. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma. 2010;51(2):252–60.
  • Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A, et al.. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood. 2009;113(26):6567–71.
  • Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, et al.. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010;28(11):1856–62.
  • Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, et al.. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339–45.
  • Milella M, Precupanu CM, Gregorj C, Ricciardi MR, Petrucci MT, Kornblau SM, et al.. Beyond single pathway inhibition: MEK inhibitors as a platform for the development of pharmacological combinations with synergistic anti-leukemic effects. Curr Pharm Des. 2005;11(21):2779–95.
  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al.. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.
  • Friday BB, Adjei AA. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res. 2008;14(2):342–6.
  • Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, et al.. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 2004;11(12):1192–7.
  • Falchook G, Infante JR, Fecher LA, Gordon MS, Vogelzang NJ, DeMarini DJ, et al.. The oral Mek 1/2 inhibitor Gsk1120212 demonstrates early efficacy signals. Ann Oncol. 2010;21:162.
  • James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al.. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.
  • Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL, et al.. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia. 2006;20(6):971–8.
  • Ravandi F, Verstovsek S, Estrov Z, Burger JA, George S, Bivins C. Significant activity of the JAK2 inhibitor, INCB018424 in patients with secondary, post-myeloproliferative disorder (MPD) acute myeloid leukemia (sAML): results of an exploratory phase II study. Blood. 2009;114(22):261–2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.