Publication Cover
Redox Report
Communications in Free Radical Research
Volume 5, 2000 - Issue 5
268
Views
49
CrossRef citations to date
0
Altmetric
Research Articles

Redox sensitive epidithiodioxopiperazines in biological mechanisms of toxicity

&
Pages 257-264 | Published online: 19 Jul 2013

  • Tolstikov GA, Shul'ts EE, Tolstikov AG. Natural polysulfides. Russ Chem Rev 1997; 66: 813–826.
  • Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Phannacol 1998; 55: 1747–1758.
  • Taylor A. The toxicology of spofidesmins and other epipoly-thiodioxopiperazines. In: Kadis S, Ciegkr A, Ajl SJ. (eds) Microbial Toxins, vol 7. New York Academic Press, 1971; 337-376.
  • Jordan TW, Cordiner SJ. Fungal epipolythiodioxopiperazine toxins have therapeutic potential and roles in disease. Trends Phannacol Sci 1987; 8: 14 4–149.
  • Nagarajan R. Gliotoxin and epipolythiodioxopiperazines. In: Betina U. (ed) Mycotoxins - Production, Isolation and Purification. New York: Elsevier, 1984; 351–385.
  • Waring P, Eichner R, Miillbacher A. The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med Res Rev 1988; 8: 499–524.
  • Waring P, Eichner RD, Tiwari-Palni U, Miillbacher A. Gliotoxin E: a new biologically active epipolythiodioxopiperazine from Penicillium terlikowskii. Aust J Chem 1987; 40: 991–997.
  • Waring P, Eichner RD, Miillbacher A. The isolation and identification of a new metabolite related to gliotoxin from cultures of Aspergillus fumigatus. Tetrahedron Lett 1986; 27: 735–738.
  • Mason JW, Kidd JG. Effects of gliotoxin and other sulphur containing compounds on tumor cells in vitro, with observations on mechanisms of action of gliotoxin. J Immunol 1951; 66: 99–106.
  • Middleton MC. The involvement of the disulphide group of sporidesmin in the action of the toxin on the swelling and respiration of liver mitochondria. Biochem Phannacol 1974; 23: 811–820.
  • Miillbacher A, Waring P, Tiwafi-Palni U, Eichner RD. Structural relationships of epipolythiodixoxpiperazines and their immunomodulating activity. Mol Immunol 1986; 23: 231–235.
  • Strunz GM, Kakushima M, Stillwell MA, Heissner CJ. Hyalodendrin: a new fungitoxic epidithiodioxopiperazine produced by a Hyalodendron species. J Chem Soc Perkin Trans 1973; 1: 2600–2602.
  • Hauser D, Loosli HR, Niklaus P. Isolierung von 11a,11'a-dihydroxychaetocinaus Verticillium tenenum. Hely Chim Acta 1972; 55: 2182–2187.
  • McInnes AG, Taylor A, Walter JA. The structure of chetomin. J Am Chem Soc 1976; 98:6741.
  • Neuss N, Nagarajan R, Molloy BB, Huckstep LL. Aranotin and related metabolites: II. Isolation, characterization and structures of two new metabolites. Tetrahedron Lett 1968; issue 42: 4467-4471.
  • Minato H, Matsumato M, Katayama T. Verticillin A, a new antibiotic from Verticillium spp. Chem Commun 1971; 11 45.
  • Johnson JR, Bruce WF, Dutcher JD. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. Production, physical and biological properties. J Am Chem Soc 1943; 65: 2005–2009.
  • Towers NR. The incidence of subclinical facial eczema in selected Waikato dairy herds. NZ Vet J 1978; 26: 142–145.
  • Williams DE, Bombuwala K, Lobkovsky E et al. Ambewelamides A and B, antineoplastic epidithiopiperazinediones isolated from the lichen Usnea spp. Tetrahedron Lett 1998; 39: 9579–9582.
  • Ernst-Russell M, Chai CLL, Hume AM, Waring P, Hocldess DCR, Elix JA. Structure revision and cytotoxic activity of the scabrosin esters, epidithiopiperazinediones from the lichen Xanthoparnielia scabrosa. Aust J Chem 1999; 52: 279–283.
  • Richard JL, Debey MC, Chennette R et al. Advances in veterinary mycology. J Med Vet Mycol 1994; 32: 169–187.
  • Korbel R, Bauer J, Gedek B. Pathological, anatomical and mycotoxicological studies of aspergillosis in birds. Tierarztl-Prax 1993; 21: 134–139.
  • Sutton P, Newcombe NR, Waring P, Miillbacher A. In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun 1994; 62: 1192–1198.
  • Cheeke PR. Endogenous toxins and mycotoxins in forage grasses and their effects on livestock. J Anim Sci 1995; 73: 909–918.
  • Cordiner SJ, Jordan TW. Inhibition by sporidesmin of hepatocyte bile acid transport. Biochem J 1993; 212: 197–204.
  • Hara M, Han M. Ras famesyl transferase inhibitors suppress the phenotype resulting from an activated ras mutation in Caenorhabditis elegans. Proc Nall Acad Sci USA 1995; 92: 3333–3337.
  • Waring P, Sjaarda A, Lin QH. Gliotoxin inactivates alcohol dehydrogenase by either covalent modification or free radical damage mediated by redox cycling. Biochem Phannacol 1995; 49: 1195–1201.
  • Rodriguez PL, Carrasco L. Gliotoxin: inhibitor of poliovirus RNA synthesis that blocks the viral RNA polymerase 3DP°1-. J Virol 1992; 66: 1971–1976.
  • Hurne A, Chai CLL, Waring P. Gliotoxin inhibits creatine kinase by reversible formation of an internal disulphide bond. J Biol Chem 2000; 275: 25002–25206.
  • Pahl HL, Kraub B, Schulze-Osthoff K et al. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-KB. J Exp Med 1996: 183: 829–840.
  • Munday R. Studies on the mechanism of toxicity of the mycotoxin sporidesmin. Evidence for intracellular generation of superoxide radical from sporidesmin. J Appl Toxicol 1984; 4: 176–181.
  • Munday R. Studies on the mechanism of toxicity of the mycotoxin sporidesmin. Generation of hydroxyl radicals by sporidesmin. J Appl Toxicol 1987; 7: 17–22.
  • Munday R. Toxicity of thiols and disulphides; involvement of free radical species. Free Radic Biol Med 1989; 7: 659–673.
  • Munday R, Maims E, Mortimer PH. Effect of antioxidants on the toxicity of the facial eczema toxin, sporidesmin, in sheep. Proc NZ Soc Anim Prod 1983; 43: 209–212.
  • Eichner RD, Waring P, Geue A, Braithwaite AW, Miillbacher A. Gliotoxin causes oxidative damage to plasmid and cellular DNA. J Biol Chem 1988; 263: 3772–3777.
  • Jiang H, Newcombe N, Sutton P, Lin QH, Miillbacher A, Waring P. Synthesis and activity of new epipolythiopiperazine-2,5-dione compounds. Aust J Chem 1993; 46: 1743–1745.
  • Waring P, Newcombe N, edel Met al. Cellular uptake and release of the immunomodulating fungal toxin gliotoxin. Toxicon 1994; 32: 491–504.
  • Beaver JP, Waring P. A decrease in intracellular glutathione concentration precedes the onset of apoptosis in murine thymocytes. Eur J Cell Biol 1995; 68: 47–54.
  • Silva JP, Winterhalter KH, Richter C. t-Butylhydroperoxide and gliotoxin stimulates Ca2+ release from rat skeletal muscle mitochondria. Redox Rep 1997; 3: 331–341.
  • Eichner RD, al Salami M, Wood PR, Miillbacher A. The effect of gliotoxin upon macrophage function. Int J Immunopharm 1986; 8: 789–797.
  • Müllbacher A, Eichner RD. Immunosuppression in vitro by a metabolite of a human pathogenic fungus. Proc Nall Acad Sci USA 1984; 81: 3835–3837.
  • Waring P, Eichner RD, Miillbacher A, Sjaarda A. Gliotoxin induces apoptosis in macrophages unrelated to its antiphagocytic properties. J Biol Chem 1988; 263: 18493–18499.
  • Yoshida LS, Abe S, Tsunawaki S. Fungal toxin gliotoxin targets the onset of superoxide generating NADPH oxidase of human neutrophils. Biochem Biophys Res Commun 2000; 268: 716–723.
  • Zhou X, Zhou A, Goping G, Hirszel P. Gliotoxin induced cytotoxicity proceeds via apoptosis and is mediated by caspases and reactive oxygen species in LLC-PK1 cells. Toxicol Lett 2000; 54: 194–202.
  • Beaver J, Waring P. Lack of correlation between early intracellular cellular calcium ion rises and the onset of apoptosis in thymocytes. Immunol Cell Biol 1994; 72: 489–499.
  • Hurne AM, Chai CLL, Waring P. Intracellular calcium rises induced by ETP toxins resulting from interaction with plasma membrane thiol groups. In preparation.
  • Waring P. DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol triphosphate levels. J Biol Chem 1990; 265: 14476–14480.
  • Waring P, Mamchak A, Khan T, Sjaarda A, Sutton P. DNA synthesis precedes gliotoxin induced apoptosis. Cell Death D 1995; 2: 201-210.
  • Waring P, Egan M, Braithwaite AW, Miillbacher A, Sjaarda A. Apoptosis induced in macrophages and T blasts by the mycotoxin sporidesmin and protection by zinc salts. Int J Immunopharm 1990; 12: 445–457.
  • Waring P, Khan T, Sjaarda A. Phosphorylation of histone H3 precedes gliotoxin induced apoptosis in thymocytes. J Biol Chem 1997; 272: 17929–17936.
  • Sutton P, Beaver J, Waring P. Evidence that gliotoxin enhances lymphocyte activation and induces apoptosis by effects on cyclic AMP levels. Biochem Pharmacol 1995; 50: 2009–2014.
  • Gilbert HF. Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol 1995; 251: 8–28.
  • Whitesides GM, Houk J, Patterson MAK. Activation parameters for thiolate-disulfide interchange reactions in aqueous solution. J Org Chem 1983; 48: 112–115.
  • Szajewski RP, Whitesides GM. Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J Am Chem Soc 1980; 102: 2011–2026.
  • Chai CLL, Heath GA, Huleatt P, O'Shea GA. The first electrochemical study of epidithiopiperazine-2,5-diones, a special class of occe-disulfide cyclic dipeptides. J Chem Soc Perkin Trans 2 1999: 389–391.
  • Fridrichsons J, Mathieson A Mc L. The structure of the methylene dibromide adduct of sporidesmin at -150°C. Acta Crystallogr 1965; 18: 1043–1052.
  • Fridrichsons J, Mathieson A Mc L. The crystal structure of gliotoxin. Acta Crystallogr 1967; 23: 439–448.
  • Mez HC. Cyclo-L-cystine acetic acid. Cryst Struct Commun 1974; 3: 657-660.
  • Capozzi G, Modena G. Oxidation of thiols. In: Patai S. (ed) The Chemistry of the Thiol Group, part 1. New York: John Wiley, 1974; 785-840.
  • Asmus KD. Sulfur-centred free radicals. Methods Enzymol 1990; 86: 168–180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.