Publication Cover
Redox Report
Communications in Free Radical Research
Volume 5, 2000 - Issue 5
2,335
Views
81
CrossRef citations to date
0
Altmetric
Research Articles

Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death

&
Pages 277-285 | Published online: 19 Jul 2013

  • Moradas-Ferreira P, Costa V, Piper P, Mager W. The molecular defences against reactive oxygen species in yeast. Mol Microbiol 1996; 19: 651–659.
  • Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998; 14: 1511–1527.
  • Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright AP, Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 1999; 274: 6366–6373.
  • Jeong JS, Kwon SJ, Kang SW, Rhee SG, Kim K. Purification and characterization of a second type thioredoxin peroxidase (type II TPx) from Saccharomyces cerevisiae. Biochemistry 1999; 38: 776–783.
  • Park SG, Cha MK, Jeong W, Kim M. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 2000; 275: 5723–5732.
  • Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 1999; 274: 27002–27009.
  • Rodriguez-Manzaneque MT, Ros J, Cabiscol E, Sorribas A, Herrero E. Grx5 Glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19: 8180–8190.
  • Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 1998; 180: 1044–1052.
  • Ruis H, Hamilton B. Regulation of yeast catalase genes. In: Scandalios JG. (ed) Molecular Biology of Free Radical Scavenging Systems. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory, 1992; 153–172.
  • Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci USA 1993; 90: 8013–8017.
  • Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P. Mitochondria' superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 1997; 143: 1649–1656.
  • Flattery-O'Brien JA, Grant CM, Dawes IW. Stationary-phase regulation of the Saccharomyces cerevisiae 50D2 gene is dependent on additive effects of HAP2/3/4/5- and STRE-binding elements. Mol Microbiol 1997; 23: 303–312.
  • Watt R, Piper PW. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control. Mol Gen Genet 1997; 253: 439–447.
  • Grant CM, Maciver FH, Dawes IW. Stationary-phase induction of GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeast Saccharomyces cerevisiae. Mol Microbiol 1996; 22: 739-746.
  • De Risi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997; 278: 680–686.
  • Grant CM, Luikenhuis S, Beckhouse A, Soderbergh M, Dawes IW. Differential regulation of glutaredoxin gene expression in response to stress conditions in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2000; 1490: 33–42.
  • Longo VD, Gralla EB, Valentine JS. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. J Biol Chem 1996; 271: 12275–12280.
  • Stephen DWS, Jamieson DJ. Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol 1997; 23: 203–210.
  • Muller EG. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem 1991; 266: 9194–9202.
  • Chae HZ, Kim III, Kim K, Rhee SG. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 1993; 268: 16815-16821.
  • Slekar ICH, Kosman DJ, Culotta VC. The yeast copper zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 1996; 271: 28831–28836.
  • Balasundaram D, Tabor CW, Tabor H. Oxygen toxicity in a polyamine-depleted spe2 delta mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1993; 90: 4693–4697.
  • Tzagoloff A, Dieckmann CL. PET genes of Saccharomyces cerevisiae. Microbiol Rev 1990; 54: 211-225.
  • Ramotar 0, Popoff SC, Demple B. Complementation of DNA repair-deficient Escherichia coli by the yeast APN1 apurinic apyrimidinic endonuclease gene. Mol Microbiol 1991; 5: 149–155.
  • Bruner SD, Nash HM, Lane WS, Verdine GL. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr Biol 1998; 8: 393–403.
  • Corson LB, Folmer J, Strain JJ, Culotta VC, Cleveland DW. Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. J Biol Chem 1999; 274: 27590–27596.
  • Liu XF, Supek F, Nelson N, Culotta VC. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 1997; 272: 11763–11769.
  • Piper PW. Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radic Biol Med 1999; 27: 1219–1227.
  • Kispal G, Csere P, Guiard B, Lill R. The ABC transporter Atmlp is required for mitochondria' iron homeostasis. FEBS Lett 1997; 418: 346–350.
  • Senbongi H, Ling F, Shibata T. A mutation in a mitochondria' ABC transporter results in mitochondria' dysfunction through oxidative damage of mitochondria' DNA. Mol Gen Genet 1999; 262: 426–436.
  • Zitomer RS, Lowry CV. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 1992; 56: 1–11.
  • Mang L, Guarente L. The yeast activator HAP1 - a GAL4 family member - binds DNA in a directly repeated orientation. Genes Dev 1994; 8: 2110–2119.
  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch E The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 1996; 15: 2227–2235.
  • Schmitt AP, McEntee K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1996; 93: 5777-5782.
  • Fernandes L, Rodrigues-Pousada C, Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 1997; 17: 6982–6993.
  • Belazzi T, Wagner A, Wieser R et al. Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTTO gene by cAMP is mediated by a positive control element. EMBO J 1991; 10: 585–592.
  • Pinkham JL, Wang ZD, Alsina J. Heme regulates 50D2 transcription by activation and repression in Saccharomyces cerevisiae. Curr Genet 1997; 31: 281–291.
  • Gorner W, Durchschlag E, Martinez-Pastor MT et al. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 1998; 12: 586–597.
  • Smith A, Ward MP, Garrett S. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 1998; 17: 3556–3564.
  • Collinson LP, Dawes IW. Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene 1995; 156: 123–127.
  • Izawa S, Inoue Y, Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 1996; 320: 61–67.
  • Fortuniak A, Jakubowski W, Bilinski T, Bartosz G. Lack of evidence of oxidative damage in antioxidant-deficient strains of Saccharomyces cerevisiae. Biochem Mol Biol Int 1996; 38: 1271–1276.
  • Cooper KF, Mallory MJ, Strich R. Oxidative stress-induced destruction of the yeast C-type cyclin ume3p requires phosphatidylinositol-specific phospholipase C and the 26S proteasome. Mol Cell Biol 1999; 19: 3338–3348.
  • Jamieson DJ, Rivers SL, Stephen DW. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 1994; 140: 3277–3283.
  • Nunes E, Siede W. Hyperthermia and paraquat-induced G1 arrest in the yeast Saccharomyces cerevisiae is independent of the RAD9 gene. Radiat Environ Biophys 1996; 35: 55–57.
  • Flattery-O'Brien JA, Dawes IW. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem 1998; 273:8564–8571.
  • Wanke V, Accorsi K, Porro D, Esposito F, Russo T, Vanoni M. In budding yeast, reactive oxygen species induce both RAS-dependent and RAS-independent cell cycle-specific arrest. Mol Microbiol 1999; 32: 753–764.
  • Wemmie JA, Steggerda SM, Moye-Rowley WS. The Saccharomyces cerevisiae AP-1 protein discriminates between oxidative stress elicited by the oxidants H202 and diamide. J Biol Chem 1997; 272: 7908–7914.
  • Kuge S, Jones N, Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 1997; 16: 1710–1720.
  • Coleman ST, Epping EA, Steggerda SM, Moye-Rowley WS. Yaplp activates gene transcription in an oxidant-specific fashion. Mol Cell Biol 1999; 19: 8302–8313.
  • Krems B, Charizanis C, Entian ICD. The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet 1996; 29: 327–334.
  • Morgan BA, Bouquin N, Merrill GF, Johnston LH. A yeast transcription factor bypassing the requirement for SBF and DSC1/MBE in budding yeast has homology to bacterial signal transduction proteins. EMBO J 1995; 14: 5679–5689.
  • Lee J, Godon C, Lagniel Get al. Yapl and skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 1999; 274: 16040–16046.
  • Charizanis C, Juhnke H, Krems B, Entian ICD. The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol Gen Genet 1999; 261: 740–752.
  • Charizanis C, Juhnke H, Krems B, Entian KB. The mitochondrial cytochrome c peroxidase Ccpl of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol Gen Genet 1999; 262: 437–447.
  • Juhnke H, Charizanis C, Latifi F, Krems B, Entian KB. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 2000; 35: 936–948.
  • Moskvina E, Schuller C, Maurer CT, Mager WH, Ruis H. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 1998; 14: 1041–1050.
  • Godon C, Lagniel G, Lee J et al. The H202 stimulon in Saccharomyces cerevisiae. J Biol Chem 1998; 273: 22480–22489.
  • Luikenhuis S, Perrone G, Dawes IW, Grant CM. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 1998; 9: 1081–1091.
  • Huh WK, Lee BH, Kim ST et al. D-erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol Microbiol 1998; 30: 895-903.
  • Gotz R, Gnann A, Zimmermann FK. Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast 1999; 15: 855–864.
  • Cabiscol E, Levine RL. The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA 1996; 93: 4170–4174.
  • Grant CM, Perrone G, Dawes IW. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 1998; 253: 893–898.
  • Grant CM, Quinn KA, Dawes IW. Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 1999; 19: 2650–2656.
  • Moskovitz J, Berlett BS, Poston JM, Stadtman ER. The yeast peptide methionine sulfoxide reductase functions as an anti-oxidant in vivo. Proc Natl Acad Sci USA 1997; 94: 9585–9589.
  • Cheng L, Watt R, Piper PW. Polyubiquitin gene expression con-tributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol Gen Genet 1994; 243: 358–362.
  • Frankenberg D, Frankenberg-Schwagner M, Harbich R. Mechan-isms of oxygen radiosensitization in irradiated yeast. I. DNA double-strand breakage. Int J Radiat Biol 1993; 64: 511–521.
  • Brennan RJ, Swoboda BE, Schiestl RH. Oxidative mutagens induce intrachromosomal recombination in yeast. Mutat Res 1994; 308: 159–167.
  • Girard PM, Boiteux S. Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae. Biochimie 1997; 79: 559–566.
  • Eide L, Bjoras M, Pirovano M, Alseth I, Berdal KG, Seeberg E. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease ifi from Escherichia coli. Proc Nall Acad Sci USA 1996; 93: 10735–10740.
  • Karahalil B, Girard PM, Boiteux S, Dizdaroglu M. Substrate specificity of the Oggl protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Nucleic Acids Res 1998; 26: 1228–1233.
  • Alseth I, Eide L, Pirovano M, Rognes T, Seeberg E, Bjoras M. The Saccharomyces cerevisiae homologues of endonuclease ifi from Escherichia coli, Ntgl and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol Cell Biol 1999; 19: 3779–3787.
  • You HJ, Swanson RL, Harrington C et al. Saccharomyces cerevisiae Ntglp and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria. Biochemistry 1999; 38: 11298–11306.
  • Meeusen S, Tieu Q, Wong E et al. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J Cell Biol 1999; 145: 291–304.
  • Steels EL, Learmonth RP, Watson K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 1994; 140: 569–576.
  • Howlett NG, Avery SV. Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 1997; 63: 2971–2976.
  • Evans MV, Turton HE, Grant CM, Dawes IW. Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J Bacteriol 1998; 180: 483–490.
  • Wonisch W, Kohlwein SD, Schaur J et al. Treatment of the budding yeast Saccharomyces cerevisiae with the lipid peroxidation product 4-HNE provokes a temporary cell cycle arrest in GI phase. Free Radic Biol Med 1998; 25: 682–687.
  • Aoshima H, Kadoya K, Taniguchi H, Satoh T, Hatanaka H. Generation of free radicals during the death of Saccharomyces cerevisiae caused by lipid hydroperoxide. Biosci Biotechnol Biochem 1999; 63: 1025–1031.
  • Do TQ, Shultz JR, Clarke CE Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc Natl Acad Sci USA 1996; 93: 7534–7539.
  • Schultz JR, Clarke CE Characterization of Saccharomyces cerevisiae ubiquinone-deficient mutants. BioFactors 1999; 9: 121–129.
  • Madeo F, Frohlich E, Ligr M et al. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 1999; 145: 757–767.
  • Powell CD, Zandycke SMV, Quain DE, Smart KA. Replicative ageing and senescence in Saccharomyces cerevisiae and the impact on brewing fermentations. Microbiology 2000; 146: 1023–1034.
  • Nestelbacher R, Laun P, Vondráková. D, Pichová. A, Schuller C, Breitenbach M. The influence of oxygen toxicity on yeast mother cell-specific aging. Exp Gerontol 2000; 35: 63–70.
  • Longo VD, Liou LL, Valentine JS, Gralla EB. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 1999; 365: 131–142.
  • Jakubowski W, Bilinski T, Bartosz G. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med 2000; 28: 659–664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.