Publication Cover
Redox Report
Communications in Free Radical Research
Volume 5, 2000 - Issue 5
527
Views
39
CrossRef citations to date
0
Altmetric
Research Articles

Sensing and protecting against superoxide stress in Escherichia coli – how many ways are there to trigger soxRS response?

Pages 287-293 | Published online: 19 Jul 2013

  • Flint DH, Tuminello JF, Emptage MH. The inactivation of Fe—S cluster containing hydro-lyases by superoxide. J Biol Chem 1993; 268: 22369–22376.
  • Liochev SI, Fridovich I. The role of 02— in the production of HU: in vitro and in vivo. Free Radic Biol Med 1994; 16: 29–33.
  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992; 5: 834–842.
  • Liochev SI, Fridovich I. The relative importance of HO* and 0N00- in mediating the toxicity of 02—. Free Radic Biol Med 1999; 26: 777–778.
  • Touati D. Superoxide dismutases in bacteria and pathogen protists. In: Scandalios J. (ed) Oxidative Stress and the Molecular Biology of Antioxidant Defense. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1997; 447–493.
  • Fridovich I. Superoxide radical and superoxide dismutases. Armu Rev Biochem 1995; 64: 97–112.
  • Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 1990; 87: 6181–6185.
  • Hidalgo E, Ding H, Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 1997; 22: 207–210.
  • Carlioz A, Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 1986; 5: 623-630.
  • Gralla EB, Valentine JS. Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacteriol 1991; 173: 5918–5920.
  • Touati D, Jacques M, Tardat B, Bouchard L, Despied S. Lethal oxidative damage and mutagenesis are generated by iron in Afur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 1995; 177: 2305–2314.
  • Flint DH, Emptage MH. Dihydroxyacid dehydratase isolation, characterization as Fe-S proteins, and sensitivity to inactivation by oxygen radicals. In: Barak Z, Chipman DM, Schloss JV. (eds) Biosynthesis of Branched Chain Amino Acids. New York: VCH, 1990; 285-314.
  • Flint DH, EmptageGuest JR. Fumarase A from Escherichia coli: purification and characterization as an iron-sulfur cluster containing enzyme. Biochemistry 1992; 31: 10331–10337.
  • Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 1991; 266: 19328–19333.
  • Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 1991; 266: 1478–1483.
  • Liochev SI, Fridovich I. Modulation of the fumarases of Escherichia coli in response to oxidative stress. Arch Biochem Biophys 1993; 301: 379–384.
  • Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 1996; 93: 13635–13640.
  • Compan I, Touati D. Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 1993; 175: 1687–1696.
  • Dubrac S, Touati D. Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol 2000; 182: 3802–3808.
  • Gort AS, Ferber DM, Imlay JA. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol Microbiol 1999; 32: 179–191.
  • Scott MD, Meshnick SR, Eaton JW. Superoxide dismutase-rich bacteria: paradoxical increase in oxidant toxicity. J Biol Chem 1987; 262: 3640–3645.
  • Hassan HM, Fridovich I. Regulation of the synthesis of superoxide dismutase in Escherichia coli. Induction by methyl viologen. J Biol Chem 1977; 252: 7667–7672.
  • Nunoshiba T, de Rojas-Walker T, Wishnok JS, Tannenbaum SR, Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 1993; 90: 9993–9997.
  • Nunoshiba T, Hidalgo E, Amabile Cuevas CF, Demple B. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol 1992; 174: 6054–6060.
  • Wu J, Weiss B. Two stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J Bacteriol 1992; 174: 3915–3920.
  • Hassan HM, Fridovich I. Intracellular production of superoxide radical and hydrogen peroxide by redox active compounds. Arch Biochem Biophys 1979; 196: 385–395.
  • Touati D. Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. J Bacteriol 1988; 170: 2511–2520.
  • Chan E, Weiss B. Endonuclease IV of Escherichia coli is induced by paraquat. Proc Natl Acad Sci USA 1987; 84: 3189–3193.
  • Fawcett WP, Wolf RJ. Genetic definition of the Escherichia coli zwf `soxbox', the DNA binding site for SoxS-mediated induction of glucose 6-phosphate dehydrogenase in response to superoxide. J Bacteriol 1995; 177: 1742–1750.
  • Chou JH, Greenberg JT, Demple B. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 1993; 175: 1026–1031.
  • Gaudu P, Weiss B. Flavodoxin mutants of Escherichia coli K-12. J Bacteriol 2000; 182: 1788–1793.
  • Meng M, Doan B, Schneider T, Storz G. OxyR and SoxRS regulation of fur. J Bacteriol 1999; 181: 4639–4643.
  • Liochev SI, Hausladen A, Beyer WJ, Fridovich I. NADPH:ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Proc Natl Acad Sci USA 1994; 91: 1328–1331.
  • Liochev SI, Fridovich I. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc Natl Acad Sci USA 1992; 89: 5892–5896.
  • Gruer MJ, Guest JR. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 1994; 140: 2531-2541.
  • Liochev SI, Hausladen A, Fridovich I. Nitroreductase A is regulated as a member of the soxRS regulon of Escherichia coli. Proc Natl Acad Sci USA 1999; 96: 3537–3539.
  • Koh YS, Choih J, Lee JH, Roe JH. Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coll. Mol Gen Genet 1996; 251: 591–598.
  • Greenberg JT, Demple B. A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol 1989; 171: 3933–3938.
  • Greenberg JT, Chou JH, Monach PA, Demple B. Activation of oxidative stress genes by mutations at the soxQlcfxBImarA locus of Escherichia coli. J Bacteriol 1991; 173: 4433–4439.
  • Cohen SP, McMurry LM, Levy SB. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol 1993; 175: 1484–1492.
  • Ariza RR, Cohen SP, Bachhawat N, Levy SB, Demple B. Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol 1994; 176: 143–148.
  • Alekshun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 1999; 7: 410–413.
  • Martin RG, Nyantakyi PS, Rosner JL. Binding of purified multiple antibiotic resistance repressor (MarR) to mar operator sequences in Escherichia coli. Proc Natl Acad Sci USA 1995; 92: 5456–5460.
  • Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 1996; 178: 306–308.
  • Jair KW, Martin RG, Rosner JL, Fujita N, Ishihama A, Wolf RE Jr. Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol 1995; 177: 7100–7104.
  • Jair KW, Fawcett WP, Fujita N, Ishihama A, Wolf RE. Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes. Mol Microbiol 1996; 19: 307–317.
  • Ariza RR, Li Z, Ringstad N, Demple B. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol 1995; 177: 1655–1661.
  • Hidalgo E, Demple B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J 1994; 13: 138–146.
  • Hidalgo E, Bollinger JJ, Bradley TM, Walsh CT, Demple B. Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem 1995; 270: 20908–20914.
  • Ding H, Hidalgo E, Demple B. The redox state of the (2Fe-2S) clusters in SoxR protein regulates its activity as a transcription factor. J Biol Chem 1996; 271: 33173–33175.
  • Gaudu P, Weiss B. SoxR, a (2Fe-2S) transcription factor, is active only in its oxidized form. Proc Natl Acad Sci USA 1996; 93: 10094–10098.
  • Gaudu P, Moon N, Weiss B. Regulation of the soxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo. J Biol Chem 1997; 272: 5082–5086.
  • Hidalgo E, Ding H, Demple B. Redox signal transduction: mutations shifting (2Fe-2S) centers of the SoxR sensor-regulator to the oxidized form. Cell 1997; 88: 121–129.
  • Ding H, Demple B. Glutathione-mediated destabilization in vitro of [2Fe-2S] centers in the SoxR regulatory protein. Proc Natl Acad Sci USA 1996; 93: 9449–9453.
  • Hidalgo E, Demple B. Activation of SoxR-dependent transcription in vitro by non catalytic or NifS-mediated assembly of [2Fe-25] clusters into Apo-SoxR*. J Biol Chem 1996; 271: 7269–7272.
  • Nunoshiba T, de Rojas-Walker T, Tannenbaum SR, Demple B. Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages. Infect Immun 1995; 63: 794–798.
  • Ding H, Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci USA 2000; 97: 5146–5150.
  • Ansari AZ, Chael ML, O'Halloran TV. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 1992; 355: 87–89.
  • Hidalgo E, Demple B. Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor. EMBO J 1997; 16: 1056–1065.
  • Imlay JA, Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 1991; 266: 6957–6965.
  • Gaudu P, Dubrac S, Touati D. Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRS regulon. J Bacteriol 2000; 182: 1761–1763.
  • Liochev SI, Benov L, Touati D, Fridovich I. Induction of the soxRS regulon of Escherichia coli by superoxide. J Biol Chem 1999; 274: 9479–9481.
  • Fee JA. Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Mol Microbiol 1991; 5: 2599–2610.
  • Pianzzola MJ, Soubes M, Touati D. Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol 1996; 178: 6736–6742.
  • Lombard M, Fontecave M, Touati D, Niviere V. Reaction of desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J Biol Chem 2000; 275: 115–121.
  • Kobayashi K, Tagawa S. Isolation of a reductase for SoxR that governs an oxidative response regulon from Escherichia coli. FEBS Lett 1999; 451: 227–230.
  • Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194.
  • Ha U, Jin S. Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of burn wounds in mice and is required to cause efficient bacteremia. Infect Immun 1999; 67: 5324–5334.
  • Fang FC, Vazquez-Torres A, Xu Y. The transcriptional regulator SoxS is required for resistance of Salmonella typhimurium to paraquat but not for virulence in mice. Infect Immun 1997; 65: 5371–5375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.