Publication Cover
Redox Report
Communications in Free Radical Research
Volume 5, 2000 - Issue 6
211
Views
4
CrossRef citations to date
0
Altmetric
Reviews

The ability of mineral dusts and fibres to initiate lipid peroxidation. Part II: relationship to different particle-induced pathological effects

Pages 325-351 | Published online: 19 Jul 2013

  • Gulumian M. The ability of mineral dusts and fibres to initiate lipid peroxidation. Part I: Parameters which determine this ability. Redox Report 1999; 4: 141–163.
  • Esterbauer H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 1993; 57 ( Suppl): 779S-786S.
  • Richter C. Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids 1987; 44: 175–189.
  • Forman HJ, Kim E. Inhibition by linoleic acid hydroperoxide of alveolar macrophage superoxide production: effects upon mitochondria' and plasma membrane potentials. Arch Biochem Biophys 1989; 274: 443–452.
  • Hemler ME, Cook IIW, Lands WE. Prostaglandin synthesis can be triggered by lipid peroxides. Arch Biochem Biophys 1979; 193: 340–345.
  • Pacifici EHK, McLeod LL, Peterson II, Sevanian A. Linoleic acid hydroperoxide-induced peroxidation of endothelial cell phospho-lipids and cytotoxicity. Free Radic Biol Med 1994; 17: 285–295.
  • Pacifici EHK, McLeod LL, Sevanian A. Lipid hydroperoxide-induced peroxidation and turnover of endothelial cell phospholipids. Free Radic Biol Med 1994; 17: 297–309.
  • Iliou J-P, Thollon C, Villeneuve N et al. Monohydroperoxidized fatty acids but not 4-hydroxynonenal induced acute cardiac cell damage. Free Radic Biol Med 1995; 19: 773–783.
  • Snyder GD, Capdevila J, Chacos N, Manna S, Falck JR. Action of luteinizing hormone-releasing hormone: involvement of novel arachidonic acid metabolites. Proc Natl Acad Sci USA 1983; 80: 3504–3507.
  • Banerjee M, Kang KII, Morrow JD, Roberts LJ, Newman JH. Effects of a novel prostaglandin, 8-epi-PGF2 alpha, in rabbit lung in situ. Am J Physiol 1992; 263: 11660–11663.
  • Kang KH, Morrow JD, Roberts LJ, Newman JH, Banerjee M. Airway and vascular effects of 8-epi-prostaglandin F2 alpha in isolated perfused rat lung. J Appl Physiol 1993; 74: 460–465.
  • Fukunaga M, Makita N, Roberts LJ, Morrow JD, Takahashi K, Bath KF. Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscle cells. Am J Physiol 1993; 264: C1619–C1624.
  • Curzio M, Esterbauer II, Di Mauro C, Cecchini G, Dianzani MU. Chemotactic activity of the lipid peroxidation product 4-hydroxynonenal and homologous hydroxyalkenals. Biol Chem Hoppe-Seyler 1986; 367: 321–329.
  • Curzio M, Ferretti C, Stephens RJ, Esterbauer II, Dianzani MU. Binding of the lipid peroxidation product 4-hydroxynonenal to human polymorphonuclear leukocytes. Cell Biochem Funct 1994; 12: 57–62.
  • Rossi MA, Curzio M, Di Mauro C et al. Experimental studies on the mechanism of action of 4-hydroxy-2,3-trans-nonenal, a lipid peroxidation product displaying chemotactic activity toward rat neutrophils. Cell Biochem Funct 1991; 9: 163–170.
  • Natarajan V, Scribner WM, Taller MM. 4-hydroxynonenal, a metabolite of lipid peroxidation, activates phospholipase Din vascular endothelial cells. Free Radic Biol Med 1993; 15: 365–375.
  • Van Kuijk FJ, Thomas DW, Stephens RJ, Dratz EA. Occurrence of 4-hydroxyalkenals in rat tissues determined as pentafiuoro-benzyl oxime derivatives by gas chromatography-mass spectro-metry. Biochem Biophys Res Commit 1986; 139: 144–149.
  • Fazio VM, Barrera G, Martinotti S et al. 4-hydroxynonenal, a product of cellular lipid peroxidation, which modulates c-myc and globin gene expression in K562 erythroleukemic cells. Cancer Res 1992; 52: 4866–4871.
  • Barrera G, Muraca R, Pizzimenti S et al. Inhibition of C-myc expression induced by 4-hydroxynonenal, a product of lipid peroxidation, in the HL-60 human leukemic cell line. Biochem Biophys Res Commit 1994; 203: 553–561.
  • Leurs R, Rademaker B, Kramer K, Timmerman II, Bast A. The effects of 4-hydroxy-2,3-trans-nonenal on I3-adrenoreceptors of rat lung membranes. Chem-Biol Interact 1986; 59: 211–218.
  • Van der Vliet A, Van der Aar EM, Bast A. The lipid peroxidation product 4-hydroxy-2,3-trans-1 nonenal decreases rat intestinal smooth muscle function in-vitro by alkylation of sulphydryl groups. J Pharm Pharmacol 1991; 43: 515–517.
  • Benedetti A, Barbieri L, Ferrali M, Casini AF, Fulceri R, Comporti M. Inhibition of protein synthesis by carbonyl compounds (4-hydroxyalkenals) originating from the peroxidation of liver microsomal lipids. Chem-Biol Interact 1981; 35: 331–340.
  • White JS, Rees KR. The mechanism of action of 4-hydroxynonenal in cell injury. Chem-Biol Interact 1984; 52: 233–241.
  • Allevi P, Anastasia M, Cajone F, Ciuffreda P, Sanvito AM. Structural requirements of aldehydes produced in LPO for the activation of the heat-shock genes in HeLa cells. Free Radic Biol Med 1995; 18: 107–116.
  • Windsor DP, White IG, Selley ML, Swan MA. Effects of the lipid peroxidation product (E)-4-hydroxy-2-nonenal on ram sperm function. J Reprod Fertil 1993; 99: 359–366.
  • Paradisi L, Panagini C, Parola M, Barrera G, Dianzani MU. Effects of 4-hydroxynonenal on adenylate cyclase and 5'-nucleotidase activities in rat liver plasma membranes. Chem-Biol Interact 1985; 53: 209–217.
  • Alberghina M, Lupo G, Anfuso CD, El Ghonemy SHI. Lipid peroxidation inhibits acyl-CoA-1-acyl-sn-glycero-3-phosphocholine 0-acyltransferase but not CTP: phosphocholine cytidylyltransferase activity in rat brain membranes. Neurochem Int 1995; 26: 477–487.
  • Uchida K, Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J Biol Chem 1993; 268: 6388–6393.
  • Kinter M, Roberts RJ. Glutathione consumption and glutathione peroxidase inactivation in fibroblast cell lines by 4-hydroxy-2-nonenal. Free Radic Biol Med 1996; 21: 457–462.
  • Krokan H, Grafstrom RC, Sundqvist K, Esterbauer H, Harris CC. Cytotoxicity, thiol depletion and inhibition of 06-methylguanine-DNA methyltransferase by various aldehydes in cultured human bronchial fibroblasts. Carcinogenesis 1985; 6: 1755–1759.
  • De Groot H, Noll T, Tolle T. Loss of latent activity of liver micro-somal membrane enzymes evoked by lipid peroxidation. Studies of nucleoside diphosphatase, glucose-6-phosphatase, and UDP glucuronyltransferase. Biochim Biophys Acta 1985; 815: 91–96.
  • Graff G, Stephenson JH, Glass DB, Haddox MK, Goldberg ND. Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides. J Biol Chem 1978; 253: 7662–7676.
  • Morrow JD, Awad JA, Kato T et al. Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation. J Clin Invest 1992; 90: 2502–2507.
  • Ullrich 0, Grune T, Henke W, Esterbauer H, Siems WG. Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal by mitochondria isolated from rat kidney cortex. FEBS Lett 1994; 352: 84–86.
  • Liu T, Stern A, Roberts LJ, Morrow JD. The isoprostanes: novel prostaglandin-like products of the free radical-catalyzed peroxidation of arachidonic acid. J Biomed Sci 1999; 6: 226-235.
  • Hartley DP, Ruth JA, Petersen DR. The hepatocellular metabolism of 4-hydroxynonenal by alcohol dehydrogenase, aldehyde dehydrogenase, and glutathione 5-transferase. Arch Biochem Biophys 1995; 316: 197–205.
  • Fujita M, Sano M, Yoshino K, Tomita I. Effects of aldehyde dehydrogenase and glutathione on the degradation of (E)-4-hydroxy-2-nonenal and N-hexanal in rat liver. Biochem Mol Biol Int 1994; 32: 429–434.
  • Siems WG, Zollner H, Grune T, Esterbauer H. Metabolic fate of 4-hydroxynonenal in hepatocytes: 1,4-dihydroxynonene is not the main product. J Lipid Res 1997; 38: 612–622.
  • Siu GM, Draper Fill. Metabolism of malondialdehyde in vivo and in vitro. Lipids 1982; 17: 349–355.
  • Grune T, Siems WG, Zollner H, Esterbauer H. Metabolism of 4-hydroxynonenal, a cytotoxic lipid peroxidation product, in Ehrlich mouse ascites cells at different proliferation stages. Cancer Res 1994; 54: 5231–5235.
  • Canuto RA, Ferro M, Muzio Get al. Role of aldehyde metabolizing enzymes in mediating effects of aldehyde products of lipid peroxidation in liver cells. Carcinogenesis 1994; 15: 1359–1364.
  • Ferro M, Muzio M, Bassi AM, Biocca ME, Canuto RA. Com-parative subcellular distribution of benzaldehyde and acetaldehyde dehydrogenase activities in two hepatoma cell lines and in normal hepatocytes. Cell Biochem Funct 1991; 9: 149–154.
  • Ishikawa T, Esterbauer H, Sies H. Role of cardiac glutathione transferase and of the glutathione S-conjugate export system in biotransformation of 4-hydroxynonenal in the heart. J Biol Chem 1986; 261: 1576–1581.
  • Siems WG, Grune T, Zollner H, Esterbauer H. Formation and metabolism of the lipid peroxidation product 4-hydroxynonenal in liver and small intestine. In: Poli G, Albano E, Dianzani MU. (eds) Free Radicals: From Basic Science to Medicine. Basel: Birkhäuser, 1993; 89–101.
  • Petras T, Siems WC, Grune T. 4-hydroxynonenal is degraded to mercapturic acid conjugate in rat kidney. Free Radic Biol Med 1995; 19: 685–688.
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of the erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158–169.
  • Marinho HS, Antunes F, Pinto RE. Role of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides. Free Radic Biol Med 1997; 22: 871–883.
  • Sevanian A, Muakkassah-Kelly SF, Montestruque S. The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides. Arch Biochem Biophys 1983; 223: 441–452.
  • Antunes F, Salvador A, Pinto RE. PHGPx and phospholipase A2/GPx: comparative importance on the reduction of hydroperoxides in rat liver mitochondria. Free Radic Biol Med 1995; 19: 669–677.
  • Vallyathan V, Castranova V, Pack D et al. Freshly fractured quartz inhalation leads to enhanced lung injury and inflammation. Potential role of free radicals. Am J Respir Crit Care Med 1995; 152: 1003–1009.
  • Janssen YMW, Marsh JP, Absher MP et al. Expression of antioxidant enzymes in rat lungs after inhalation of asbestos or silica. J Biol Chem 1992; 267: 10625–10630.
  • Mannervik B, Alin P, Guthenberg C et al. Identification of three classes of cytosolic glutathione transferases common to several mam-malian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA 1985; 82: 7202–7206.
  • Meyer DJ, Coles B, Pemble SE, Gilmore KS, Fraser GM, Ketterer B. Theta, a new class of glutathione transferase purified from rat and man. Biochem J 1991; 274: 409–414.
  • Singhal SS, Ahmad H, Sharma R, Gupta S, Hague K, Awasthi YC. Purification and characterization of human muscle glutathione 5-transferases: evidence that glutathione 5-transferase [zeta] corresponds to a locus distinct from GST1, GST2, and GST3. Arch Biochem Biophys 1991; 285: 64–73.
  • Pemble SE, Wardle AF, Taylor JB. Glutathione 5-transferase class kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J 1996; 319: 749–754.
  • Board PG, Coggan M, Chelvanayagam Get al. Identification, characterization and crystal structure of the omega class glutathione transferases. J Biol Chem 2000; 275: 24798–24806.
  • Andersson C, Mosialou E, Weinander R, Herbert H, Morgenstern R. Rat liver microsomal glutathione transferase: studies on structure and function. In: Tew KD, Picket CB, Mantle TJ, Mannervik B, Hayes JD. (Eds) Structure and Function of Glutathione Transferases. Boca Raton: CRC Press, 1993; 109-116.
  • DeJong JL, Morgenstern R, Jornvall H, DePierre JW, Tu C-P. Gene expression of rat and human microsomal glutathione S-transferases. J Biol Chem 1988; 263: 8430–8436.
  • Strange RC, Faulder GC, Davis BA et al. The human glutathione S-transferases: studies on the tissue distribution and genetic variation of the GST1, GST2 and GST3 isoenzymes. Ann Hum Genet 1984; 48: 11–20.
  • Hussey AJ, Hayes JD. Human Mu-class glutathione 5-transferases present in liver, skeletal muscle and testicular tissue. Biochim Biophys Acta 1993; 1203: 131–141.
  • Awasthi YC, Sharma R, Singhal SS. Human glutathione 5-transferases. Int J Biochem 1994; 26: 295–308.
  • Cantlay AM, Smith CAD, Wallace WA, Yap P-L, Lamb D, Harrison DJ. Heterogeneous expression and polymorphic genotype of glutathione 5-transferases in human lung. Thorax 1994; 49: 1010–1014.
  • Ketterer B. Glutathione 5-transferases and prevention of cellular free radical damage. Free Radic Res 1998; 28: 647–658.
  • Jensson H, Guthenberg C, ;UM P, Mannervik. Rat glutathione transferase 8-8, an enzyme efficiently detoxifying 4-hydroxyalk-2-enals. FEBS Lett 1986; 203: 207–209.
  • Mosialou E, Ekstrom G, Adang AE, Morgenstern R. Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid peroxidation. Biochem Pharmacol 1993; 45: 1645–1651.
  • Ketterer B, Meyer DJ, Taylor JB, Pemble S, Coles B, Fraser G. GSTs and protection against oxidative stress. In: Hayes JD, Picket CB, Mantle TJ. (eds) Glutathione S-Transferases and Drug Resistance. London: Taylor and Francis, 1990; 97–109.
  • Partridge CA, Dao DD, Awasthi YC. Glutathione 5-transferases of lung: purification and characterization of human lung glutathione 5-transferases. Lung 1984; 162: 27–36.
  • Medh RD, Saxena M, Singhal SS, Ahmad H, Awasthi YC. Characterization of a novel glutathione 5-transferase isoenzyme from mouse lung and liver having structural similarity to rat glutathione 5-transferase 8-8. Biochem J 1991; 278: 793–799.
  • Khan MF, Srivastava SK, Singhal SS et al. Iron-induced lipid peroxidation in rat liver is accompanied by preferential induction of glutathione 5-transferase 8-8 isozyme. Toxicol Appl Pharmacol 1995; 131: 63–72.
  • Berhane K, Widersten M, Engstrom A, Kozarich JW, Mannervick B. Detoxication of base propenals and other a,13-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci USA 1994; 91: 1480–1484.
  • Hubatsch I, Ridderstrom M, Mannervik B. Human glutathione A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 1998; 330: 175–179.
  • Danielson UH, Esterbauer H, Mannervik B. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione 5-transferases. Biochem J 1987; 247: 707–713.
  • Singhal SS, Zimniak P, Awasthi S et al. Several closely related glutathione 5-transferase isozymes catalyzing conjugation of 4-hydroxynonenal are differentially expressed in human tissues. Arch Biochem Biophys 1994; 311: 242–250.
  • Comstock KE, Widersten M, Hao X-Y, Henner WD, Mannervik B. A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes. Arch Biochem Biophys 1994; 311:487–495.
  • Kelsey KT, Nelson H11, Wiencke JK, Smith CM, Levin S. The glutathione 5-transferase 0 and i deletion polymorphism in asbestosis. Am J Indust Med 1997; 31: 274–279.
  • Hirvonen A, Pelin K, Tammilehto L, Karjalainen A, Mattson K, Linnainmaa K. Inherited GSTM1 and NAT2 defects as concurrent risk modifiers in asbestos-related human malignant mesothelioma. Cancer Res 1995; 55: 2981–2983.
  • Jakobsson K, Rannug A, Alexandrie A-K, Warholm M, Rylander L, Hagmar L. Radiographic changes and lung function in relation to activity of the glutathione transferases theta and mu among asbestos cement workers. Toxicol Lett 1995; 77: 363–369.
  • Anttila S, Luostarinen L, Hirvonen A et al. Pulmonary expression of glutathione 5-transferase M3 in lung cancer patients: association with GSTM1 polymorphism, smoking, and asbestos exposure. Cancer Res 1995; 55: 3305–3309.
  • Esterbauer H, Zollner H, Lang J. Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions. Biochem J 1985; 228: 363–373.
  • Mitchell DY, Petersen DR. The oxidation of a-13 unsaturated aldehydic products of lipid peroxidation by rat liver aldehyde dehydrogenases. Toxicol Appl Pharmacol 1987; 87: 403–410.
  • Lindahl R, Petersen DR. Lipid aldehyde oxidation as a physiological role for class 3 aldehyde dehydrogenases. Biochem Pharmacol 1991; 41: 1583–1587.
  • Watanabe K, Narimatsu S, Yamamoto I, Yoshimura H. Oxygenation mechanism in conversion of aldehyde to carboxylic acid catalyzed by a cytochrome P-450 isozyme. J Biol Chem 1991; 266: 2709–2711.
  • Watanabe K, Matsunaga T, Narimatsu S, Yamamoto I, Yoshimura H. Mouse hepatic microsomal oxidation of aliphatic aldehydes (C8-C11) to carboxylic acids. Biochem Biophys Res Commun 1992; 188: 114–119.
  • Sawada H, Hara A, Hayashibara M, Nakayama T, Usui S, Saeki T. Microsomal reductase for aromatic aldehydes and ketones in guinea pig liver. Purification, characterization, and functional relationship to hexose-6-phosphate dehydrogenase. J Biochem 1981; 90: 1077–1085.
  • Kuo C-L, Vaz ADN, Coon MJ. Metabolic activation of trans-4- hydroxy-2-nonenal, a toxic product of membrane lipid peroxidation and inhibitor of P450 cytochromes. J Biol Chem 1997; 272: 22611–22616.
  • Srivastava S, Chandra A, Bhatnagar A, Srivastava SK, Ansari NH. Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem Biophys Res Commit 1995; 217: 741–746.
  • Spycher S, Tabataba-Vakili S, O'Donnell VB, Palomba L, Azzi A. 4-hydroxy-2,3-trans-nonenal induces transcription and expression of aldose reductase. Biochem Biophys Res Commun 1996; 226: 512–516.
  • Spycher SE, Tabataba-Vakili S, O'Donnell VB, Palomba L, Azzi A. Aldose reductase induction: a novel response to oxidative stress of smooth muscle cells. FASEB J 1997; 11: 181–188.
  • Bounds PL, Winston GW. The reaction of xanthine oxidase with aldehydic products of lipid peroxidation. Free Radic Biol Med 1991; 11:447–453.
  • Hamm H, Kroegel C, Hohlfeld J. Surfactant: a review of its functions and relevance in adult respiratory disorders. Respir Med 1996; 90: 251–270.
  • Kikkawa Y, Yoneda K, Smith F, Packard B, Suzuki K. The type II epithelial cells of the lung. II. Chemical composition and phospholipid synthesis. Lab Invest 1975; 32: 295–302.
  • Johansson J, Curstedt T, Robertson B. The proteins of the surfactant system. Eur Respir J 1994; 7: 372–391.
  • Bhaskar KR, O'Sullivan DD, Opaskar-Hincman H, Reid LM. Lipids in airway secretions. Eur J Respir Dis 1987; 71 (Suppl. 153): 215-221.
  • Coonrod JD. Role of surfactant free acids in antimicrobial defenses. Eur J Respir Dis 1987; 71 (Suppl 153): 209-214.
  • Ueda T, Ikegami M, Jobe A. Surfactant subtypes. In vitro conversion, in vivo function, and effects of serum proteins. Am J Respir Crit Care Med 1994; 149: 1254–1259.
  • Holm BA, Keicher L, Liu MY, Sokolowski J, Enhorning G. Inhibition of pulmonary surfactant function by phospholipases. J Appl Physiol 1991; 71: 317–321.
  • Gilliard N, Heldt GP, Loredo Jet al. Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties. J Clin Invest 1994; 93: 2608–2615.
  • Andersson S, ICI-leiter A, Merritt TA. Oxidative inactivation of surfactants. Lung 1999; 177: 179–189.
  • Haddad IY, Ischiropoulos H, Holm BA, Beckman JS, Baker JR, Matalon S. Mechanisms of peroxynitrite-induced injury to pulmonary surfactants. Am J Physiol 1993; 265: L555–L564.
  • Darley-Usmar VM, Hogg N, O'Leary VJ, Wilson MT, Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun 1992; 17: 9–20.
  • Wallace WE, Vallyathan V, Keane MJ, Robinson V. In vitro biologic toxicity of native and surface-modified silica and kaolin. J Toxicol Environ Health 1985; 16: 415–424.
  • Schimmelpfeng J, Drosselmeyer E, Hofheinz V, Seidel A. Influence of surfactant components and exposure geometry on the effects of quartz and asbestos on alveolar macrophages. Environ Health Perspect 1992; 97: 225–231.
  • Jabbour AJ, Holian A, Scheule RIC. Lung lining fluid modification of asbestos bioactivity for the alveolar macrophage. Toxicol Appl Pharmacol 1991; 110: 283–294.
  • Antonini JM, Reasor MJ. Effect of short-term exogenous pulmonary surfactant treatment on acute lung damage associated with the intratracheal instillation of silica. J Toxicol Environ Health 1994; 43: 85–101.
  • Antonini JM, McCloud CM, Reasor MJ. Acute silica toxicity: attenuation by amiodarone-induced pulmonary phospholipidosis. Environ Health Perspect 1994; 102: 372–378.
  • Dethloff LA, Gladen BC, Gilmore LB, Hook GER. Kinetics of pulmonary surfactant phosphatidylcholine metabolism in the lungs of silica-treated rats. Toxicol Appl Pharmacol 1989; 98: 1–11.
  • Kawada H, Horiuchi T, Shannon JM, Kuroki Y, Voelker DR, Mason RJ. Alveolar type II cells, surfactant protein A (SP-A), and the phospholipid components of surfactant in acute silicosis in the rat. Am Rev Respir Dis 1989; 140: 460–470.
  • Bégin R, Lesur 0, Bouhadiba T et al. Phospholipid content of bronchoalveolar lavage fluid in granite workers with silicosis in Quebec. Thorax 1993; 48: 840–844.
  • Schengrund C-L, Chi X, Sabol J, Griffith JW. Long-term effects of instilled mineral dusts on pulmonary surfactant isolated from monkeys. Lung 1995; 173: 197–208.
  • Ladanyi E. Electrochemical study of oxygen behaviour with lung surfactant. Adv Exp Med Biol 1989; 248: 787–794.
  • Liu B, Yao R, Tian L, Li Q. Effects of quartz dust on lipid peroxidation and autooxidation in rats. Zhongguo Gonggong Weisheng Xuebao 1995; 14:82–84.
  • Petruska JM, Leslie KO, Mossman BT. Enhanced lipid peroxidation in lung lavage of rats after inhalation of asbestos. Free Radic Biol Med 1991; 11: 425–432.
  • Nolan RP, Langer AM, Harington JS, Oster G, Selikoff U. Quartz hemolysis as related to its surface functionalities. Environ Res 1981; 26: 503–520.
  • Trosiç I, Horvat D, Stilinovic L, Pisl Z. Cytotoxic, hemolytic, and mutagenic issue caused by chrysotile asbestos in vitro. In: Mossman BT, Begin RO. (eds) Effects of Mineral Dusts on Cells; NATO ASI Series, Vol. H30. Berlin: Springer, 1989; 423-432.
  • Koshi K, Kohyama N, Myojo T, Fukuda K. Cell toxicity, hemolytic action and clastogenic activity of asbestos and its substitutes. Indust Health 1991; 29: 37–56.
  • Langer AM, Nolan RP. Physicochemical properties of quartz controlling biological activity. In: Goldsmith DF, Winn DM, Shy CM. (eds) Silica, Silicosis, and Cancer. New York: Praeger, 1986; 125–135.
  • Scarpace PJ, Yu BP. Diet restriction retards the age-related loss of beta-adrenergic receptors and adenylate cyclase activity in rat lung. J Gerontol 1987; 42: 442–446.
  • Curtis MT, Gilfor D, Farber JL. Lipid peroxidation increases the molecular order of microsomal membranes. Arch Biochem Biophys 1984; 235: 644–649.
  • Barrow DA, Lentz BR. A model for the effect of lipid peroxidation on diphenylhexatriene fluorescence in phospholipid vesicles. Biochim Biophys Acta 1981; 645: 17–23.
  • Watanabe H, Kobayashi A, Yamamoto T, Suzuki S, Hayashi H, Yamazaki N. Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium. Free Radic Biol Med 1990; 9: 507–514.
  • Eichenberger K, Bohiii P, Winterhalter ICH, Kawato S, Richter C. Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain. FEBS Lett 1982; 142: 59–62.
  • Gwozdzinski K. Radiation-induced structural alterations in fish red blood cells. Free Radic Biol Med 1991; 11: 557–561.
  • Bruch RC, Thayer WS. Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes. Biochim Biophys Acta 1983; 733: 216–222.
  • Sato Y, Kamo S, Takahashi T, Suzuki Y. Mechanism of free radical-induced hemolysis of human erythrocytes: hemolysis by water-soluble radical initiator. Biochemistry 1995; 34: 8940–8949.
  • Maccarrone M, Bladergroen MR, Rosato N, Finazzi AF. Role of lipid peroxidation in electroporation-induced cell permeability. Biochem Biophys Res Commun 1995; 209: 417–425.
  • Jain S, Thomas M, Kumar PG, Laloraya M. Appearance of homogeneous smectic multilamellar microenvironments in biomembranes undergoing superoxide-initiated lipid peroxidation: lipid-dienyl radical accumulation and fluidity management in lipid bilayers. Biochem Mol Biol Int 1994; 33: 853–862.
  • Witz G, Lawrie NJ, Goldstein BD, Ryer-Powder J, Amoruso MA. Effects of alpha, beta-unsaturated aldehydes on macrophage and neutrophil membrane function, fluidity and sulfhydryl status. Basic Life Sci 1988; 49: 849–851.
  • Chen JJ, Yu BP. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med 1994; 17: 411–418.
  • Esterbauer H, Koller E, Slee RG, Koster JF. Possible involvement of the lipid peroxidation product 4-hydroxynonenal in the formation of fluorescent chromolipids. Biochem J 1986; 239: 405–409.
  • Heintz 0, Bossanne P, Fauvelle F, Debouzy JC. Interaction of 4-hydroxynonenal with membranes. 111, 311), 2H NMR study. Ann Pharm Fr 1995; 53: 24–28.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 1991; 11: 81–128.
  • Gendek E, Bartosz G, Leyko W. A spin label study of the effect of chrysotile asbestos on erythrocyte membranes. Br J Indust Med 1984; 41: 46–50.
  • Wu W, Liu S, Yin H. ESR studies on effects of chrysotile on erythrocyte membrane lipid and protein. Shengwa Wuli Xuebao 1994; 10: 421–425.
  • Gendek EG, Brody AR. Changes in lipid ordering of model phospholipid membranes treated with chrysotile and crocidolite asbestos. Environ Res 1990; 53: 152–167.
  • Light WG, Wei ET. Surface charge and a molecular basis for asbestos toxicity. In: Brown RC, Chamberlain M, Davies R, Gormley IP. (eds) The In Vitro Effects of Mineral Dusts. London: Academic Press, 1980; 139–145.
  • Depasse J. Mechanism of the haemolysis by colloidal silica. In: Brown RC, Chamberlain M, Davies R, Gormley IP. (eds) The In Vitro Effects of Mineral Dusts. London: Academic Press, 1980; 125–130.
  • Razzaboni BL, Bolsaitis P. Evidence of an oxidative mechanism for hemolytic activity of silica particles. Environ Health Perspect 1990; 87: 337–341.
  • Iguchi H, Kojo S, Ikeda M. Lipid peroxidation and disintegration of the cell membrane structure in cultures of rat lung fibroblasts treated with asbestos. J Appl Toxicol 1993; 13: 269–275.
  • Dalal NS, Shi X, Vallyathan V. Role of free radicals in the mechanisms of hemolysis and lipid peroxidation by silica: comparative ESR and cytotoxicity studies. J Toxicol Environ Health 1990; 29: 307–316.
  • Gabor S, Anca Z. Effect of silica on lipid peroxidation in the red cells. Int Arch Arbeitsmed 1974; 32: 327–332.
  • Gabor S, Anca Z. Effect of asbestos on lipid peroxidation in the red cells. Br J Indust Med 1975; 32: 39–41.
  • Iguchi H, Kojo S. Possible generation of hydrogen peroxide and lipid peroxidation of erythrocyte membrane by asbestos: cyto-toxic mechanism of asbestos. Biochem Int 1989; 18: 981–990.
  • Aslam M, Arif MJ, Rahman Q. Red blood cell damage by wollastonite: in vitro study. J Appl Toxicol 1995; 15: 27–31.
  • Uchino T, Kijima K, Ando M. The relation between formation of lipid hydroperoxides and hemolysis of erythrocytes by UVA-sensitization of hematoporphyrines. Jpn J Toxicol Environ Health 1994; 40: 550–557.
  • Olilroe-Smith TA. Peroxidative action of quartz in relation to membrane lysis. Environ Res 1974; 7: 110-116.
  • Chvapil M, Stankova L, Malshet V. Lipid peroxidation as one of the mechanisms of silica fibrogenicity? I. Study with erythrocytes. Environ Res 1976; 11: 78–88.
  • Singh SV, Rahman Q. Interrelationship between hemolysis and lipid peroxidation of human erythrocytes induced by silicic acid and silicate dusts. J Appl Toxicol 1987; 7: 91–96.
  • Mild M, Tamai H, Mino M, Yamamoto Y, Niki E. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by a-tocopherol. Arch Biochem Biophys 1987; 258: 373–380.
  • Van den Berg JJM, de Fouw NJ, Kuypers FA, Roelofsen B, Houtsmuller UMT, Op den Kamp JAF. Increased n-3 polyunsaturated fatty acid content of red blood cells from fish oil-fed rabbits increases in vitro lipid peroxidation, but decreases hemolysis. Free Radic Biol Med 1991; 11: 393–399.
  • Jaurand MC, Gaudichet A, Halpern S, Bignon J. In vitro biodegradation of chrysotile fibers by alveolar macrophages and mesothelial cells in culture: composition with a pH effect. Br J Indust Med 1984; 41: 389–395.
  • Johnson NF, Davies R. The effect of crocidolite and chrysotile on peritoneal macrophages: a study by transmission and scanning electron microscopy. In: Brown RC, Chamberlain M, Davies R, Gormley IP. (eds) The In Vitro Effects of Mineral Dusts. London: Academic Press, 1980; 97–103.
  • Hesterberg TW, Butterick CJ, Oshimura M, Brody AR, Barrett JC. Role of phagocytosis in Syrian hamster cell transformation and cytogenetic effects induced by asbestos and short and long glass fibers. Cancer Res 1986; 46: 5795–5802.
  • Hong YC, Choi SS. Cytotoxicity and multinucleate giant cell formation in Chinese hamster lung fibroblast caused by crocidolite and chrysotile. J Korean Med Sci 1997; 12: 99–104.
  • Hobson J, Wright JL, Churg A. Active oxygen species mediate asbestos fiber uptake by tracheal epithelial cells. FASEB J 1990; 4: 3135–3139.
  • Haugen A, Schafer PW, Lechner JF, Stoner GD, Trump BF, Harris CC. Cellular ingestion, toxic effects, and lesions observed in human bronchial epithelial tissue and cells cultured with asbestos and glass fibers. Int J Cancer 1982; 30: 265–272.
  • Brody AR, Hill LH, Adkins Jr B, O'Connor RW. Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis 1981; 123: 670–679.
  • Garcia JGN, Gray LD, Dodson RF, Callahan KS. Asbestos-induced endothelial cell activation and injury. Demonstration of fiber phagocytosis and oxidant-dependent toxicity. Am Rev Respir Dis 1988; 138: 958–964.
  • Cole RW, Ault JG, Hayden JH, Rieder CL. Crocidolite asbestos fibers undergo size-dependent microtubule-mediated transport after endocytosis in vertebrate lung epithelial cells. Cancer Res 1991; 51:4942–4947.
  • Jensen CG, Jensen LCW, Ault JG, Osorio G, Cole R, Rieder CL. Time-lapse video light microscopic and electron microscopic observations of vertebrate epithelial cells exposed to crocidolite asbestos. In: Davis JMG, Jaurand MC. (Eds) Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres. NATO ASI Series Vol. H85. Berlin: Springer, 1994; 63-78.
  • Boylan AM, Sanan DA, Sheppard D, Broaddus VC. Vitronectin enhances internalization of crocidolite asbestos by rabbit pleural meso-thelial cells via the integin aVI35. J Clin Invest 1995; 96: 1987–2001.
  • Churg AC. The role of active oxygen species in uptake of mineral particles by tracheobronchial epithelial cells. In: Davis JMG, Jaurand MC. (Eds) Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres. NATO ASI Series Vol. H85. Berlin: Springer, 1994; 1-8.
  • MadaraJ L, Dharmsathaphorn K. Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol 1985; 101: 2124–2133.
  • Hirsch M. Noske W. The tight junction: structure and function. Micron 1993; 24: 325–352.
  • Rochat T, Burkhard C, Finci-Cerkez V, Meda P. Oxidative stress causes a protein kinase C-independent increase of paracellular permeability in an in vitro epithelial model. Am J Respir Cell Mol Biol 1993; 9: 496–504.
  • Dethloff LA, Gilmore LB, Gladen BC, George G, Chhabra RS, Hook GER. Effects of silica on the composition of the pulmonary extracellular lining. Toxicol Appl Pharmacol 1986; 84: 66–83.
  • Nery LE, Sandoval PRM, Jardim JRB, Bagatin E, Alonso G. Silica exposure and alveolar epithelial permeability in ceramic workers. Am Rev Respir Dis 1985; 131: A193.
  • Merchant RIC, Peterson MW, Hunninghake GW. Silica directly increases permeability of alveolar epithelial cells. J Appl Physiol 1990; 68: 1354–1359.
  • Gellert AR, Langford JA, Winter RJD, Uthayakumar S, Sinha G, Rudd RM. Asbestosis: assessment by bronchoalveolar lavage and measurement of pulmonary epithelial permeability. Thorax 1985; 40: 508–514.
  • Folkesson HG, Leanderson P, Westrom BR, Tagesson C. Increased lung to blood passage of polyethylene glycols after intratracheal instillation of ferritin and asbestos fibres in the rat. Eur Respir J 1993; 6:96–101.
  • Oberdörster G, Gavett SH, Marcello NL. Drago SR. Effects of amosite fibers of different sizes on lavagable cells and epithelial permeability of the lung. In: Beck EG, Bignon J. (eds) In Vitro Effects of Mineral Dusts. Berlin: Springer, 1985; 413–420.
  • Peterson MW, Walter ME, Gross TJ. Asbestos directly increases lung epithelial permeability. Am J Physiol 1993; 265: L308–L317.
  • Gardner SY, Brody AR, Mangum JB, Everitt JI. Chrysotile asbestos and 11202 increase permeability of alveolar epithelium. Exp Lung Res 1997; 23: 1–16.
  • Merchant RIC, Hunninghake GW. Antioxidants do not prevent silica-induced permeability. Am Rev Respir Dis 1990; 141: A417.
  • Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca' in toxic cell killing. Trends Pharmacol Sci 1989; 10: 281–285.
  • Jones DP, Thor H, Smith MT, Jewell SA, Orrenius S. Inhibition of ATP-dependent microsomal Ca' sequestration during oxidative stress and its prevention by glutathione. J Biol Chem 1983; 258: 6390–6393.
  • Kukreja RC, Weaver AB, Hess ML. Stimulated human neutrophils damage cardiac sarcoplasmic reticulum function by generation of oxidants. Biochim Biophys Acta 1989; 990: 198–205.
  • Raess BU, Keenan CE, McConnell EJ. Effects of 4-0H-2,3-trans-nonenal on human erythrocyte plasma membrane Ca” pump and passive Ca' permeability. Biochem Biophys Res Commit 1997; 235: 451–454.
  • Richter C, Frei B. Ca' release from mitochondria induced by prooxidants. Free Radic Biol Med 1988; 4: 365–375.
  • Carini R, Bellomo G, Dianzani MU, Albano E. The operation of Nat/Ca' exchanger prevents intracellular Ca' overload and hepatocyte killing following iron-induced lipid peroxidation. Biochem Biophys Res Commit 1995; 208: 813–818.
  • Elliott SJ, Koliwad SK. Oxidant stress and endothelial membrane transport. Free Radic Biol Med 1995; 19: 649–658.
  • Thor H, Hartzell P, Orrenius S. Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca'. J Biol Chem 1984; 259: 6612–6615.
  • Anghileri LJ, Maincent P, Thouvenot P. Role of lipid peroxidation in iron-induced cellular calcium overload. Biol Trace Elem Res 1996; 52: 163–169.
  • Albano E, Bellomo G, Parola M, Carini R, Dianzani MU. Stimulation of lipid peroxidation increases the intracellular calcium content of isolated hepatocytes. Biochim Biophys Acta 1991; 1091: 310–316.
  • Racay P, Kaplán P, Mezesová. V, Lehotsky J. Lipid peroxidation both inhibits Ca2+-ATPase and increases Ca' permeability of endoplasmic reticulum membrane. Biochem Mol Biol Int 1997; 41: 647–655.
  • Murphy JK, Hoyal CR, Livingston FR, Forman HJ. Modulation of the alveolar macrophage respiratory burst by hydroperoxides. Free Radic Biol Med 1995; 18: 37–45.
  • Hoyal CR, Gozal E, Thou H, Foldenauer K, Forman HJ. Modulation of the rat alveolar respiratory burst by hydroperoxides is calcium dependent. Arch Biochem Biophys 1996; 326: 166–171.
  • Rojanasakul Y, Wang LY, Hoffman AH et al. Mechanisms of hydroxyl free radical-induced cellular injury and calcium overloading in alveolar macrophages. Am J Respir Cell Mol Biol 1993; 8: 377–383.
  • Carini R, Bellomo G, Paradisi L, Dianzani MU, Albano E. 4-hydroxynonenal triggers Ca' influx in isolated rat hepatocytes. Biochem Biophys Res Commit 1996; 218: 772–776.
  • Hardy SJ, Robinson BS, Ferrante A et al. Polyenoic very-long-chain fatty acids mobilize intracellular calcium from a thapsigargin-insensitive pool in human neutrophils. The relationship between Ca' mobilization and superoxide production induced by long- and very-long-chain fatty acids. Biochem J 1995; 311: 689–697.
  • Kane AB, Stanton RP, Raymond EG, Dobson ME, ICnafelc ME, Farber JL. Dissociation of intracellular lysosomal rupture from the cell death caused by silica. J Cell Biol 1980; 87: 643–651.
  • Tuomala M, Hirvonen M-R, Savolainen KM. Changes in free intracellular calcium and production of reactive oxygen metabolites in human leukocytes by soluble and particulate stimuli. Toxicology 1993; 80: 71–82.
  • Kane AB, Gleva GF, Goodglick LA. Altered calcium homeostasis and mineral dust toxicity. In: Mossman BT, Begin RO. (eds) Effects of Mineral Dusts on Cells; NATO ASI Series, Vol. H30. Berlin: Springer, 1989; 231-238.
  • Rojanasakul Y, Wang L, Malanga CJ, Ma JYC, Banks DE, Ma JKH. Altered calcium homeostasis and cell injury in silica-exposed alveolar macrophages. J Cell Physiol 1993; 154: 310–316.
  • Chen J, Armstrong LC, Liu S, Gerriets JE, Last JA. Silica increases cytosolic free calcium concentration of alveolar macrophages in vitro. Toxicol Appl Pharmacol 1991; 111: 211–220.
  • Van Dyk K, Gutierrez J, van Dyke C, Wu L. Early role of lipid inflammatory mediators in silica toxicity: possible methods to detoxify silica. In: Castranova V, Valyathan V, Wallace WE. (eds) Silica and Silica-Induced Lung Diseases. Boca Raton: CRC Press, 1996; 209–228.
  • Kalla B, Hamilton RF, Scheule RK, Holian A. Role of extracellular calcium in chrysotile asbestos stimulation of alveolar macrophages. Toxicol Appl Pharmacol 1990; 104: 130–138.
  • Roney PL, Holian A. Possible mechanism of chrysotile asbestos-stimulated superoxide anion production in guinea pig alveolar macrophages. Toxicol Appl Pharmacol 1989; 100: 132–144.
  • Lim Y, Kim S-H, Cho Y-J, Kim K-A, Oh M-W, Lee K-H. Silica-induced oxygen radical generation in alveolar macrophage. Indust Health 1997; 35: 380–387.
  • Jabbour AJ, Iyer R, Scheule RK, Holian A. Potential intracellular messengers involved in silica stimulation of alveolar macrophages. In: Castranova V, Valyathan V, Wallace WE. (eds) Silica and Silica-Induced Lung Diseases. Boca Raton: CRC Press, 1996; 137–149.
  • Wydler M, Maier P, Zbinden G. Differential cytotoxic, growth-inhibiting and lipid-peroxidative activities of four different asbestos fibres in vitro. Toxicol In Vitro 1988; 2: 297-302.
  • Kodama Y, Boreiko CJ, Maness SC, Hesterberg TW. Cytotoxic and cytogenetic effects of asbestos on human bronchial epithelial cells in culture. Carcinogenesis 1993; 14: 691–697.
  • Dong HY, Buard A, Renier A, Levy, F, Saint-Etienne L, Jaurand MC. Role of oxygen derivatives in the cytotoxicity and DNA damage produced by asbestos on rat pleural mesothelial cells in vitro. Carcinogenesis 1994; 15: 1251–1255.
  • Jaurand MC, Bastie-Sigeac I, Renier A, Bignon J. Comparative toxicities of different forms of asbestos on rat pleural mesothelial cells. Environ Health Perspect 1983; 51: 153–158.
  • Kamp DW, Dunne M, Anderson JA, Weitzman SA, Dunn MM. Serum promotes asbestos-induced injury to human pulmonary epithelial cells. J Lab Clin Med 1990; 116: 289–297.
  • Aufderheide M, Knebel JW, Schulte P. Differences in the sensitivity of hamster and rat lung cells exposed in vitro to natural and man-made fibres. Exp Toxicol Pathol 1996; 48: 505–507.
  • Shatos MA, Doherty JM, Marsh JP, Mossman BT. Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species. Environ Res 1987; 44: 103–116.
  • Goodglick LA, Kane AB. Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Res 1986; 46: 5558–5566.
  • Goodglick LA, Pietras LA, Kane AB. Evaluation of the causal relationship between crocidolite asbestos-induced lipid peroxidation and toxicity to macrophages. Am Rev Respir Dis 1989; 139: 1265–1273.
  • Schimmelpfeng J, Seidel A. Cytotoxic effects of quartz and chrysotile asbestos: in vitro interspecies comparison with alveolar macrophages. J Toxicol Environ Health 1991; 33: 131–140.
  • Mossman BT, Kessler JB, Ley BW, Craighead JE. Interaction of crocidolite asbestos with hamster respiratory mucosa in organ culture. Lab Invest 1977; 36: 131–139.
  • Kislitsyna NS. Relation between the cytotoxic effect of silicosis-inducing dust and the enhanced macrophage lipid peroxidation. Gig Tr Prof Zabol 1986; 9: 12–16.
  • Seidel A, Nieder U, Pätzold S, Schimmelpfeng J, Schmidt A, Wilzcek W. Effects of quartz and asbestos on alveolar macrophages: interspecies comparison and cell biological studies. In: Seemayer NH, Hadnagy W (Eds) Environmental Hygiene II. Berlin: Springer, 1990; 199–202.
  • Vallyathan V. Oxygen radical generation by asbestos and its correlation to cytotoxicity. In: Davis JMG, Jaurand MC. (Eds) Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres. NATO ASI Series Vol. 1185. Berlin: Springer, 1994; 9-21.
  • Kerr JF, Wyllie All, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.
  • Iyer R, Hamilton RF, Li L, Holian A. Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. Toxicol Appl Pharmacol 1996; 141: 84–92.
  • Hamilton RF, Iyer LL, Holian A. Asbestos induces apoptosis in human alveolar macrophages. Am J Physiol 1996; 271: L813–L819.
  • Leigh J, Wang H, Bonin A, Peters M, Ruan X. Silica-induced apoptosis in alveolar and granulomatous cells in vivo. Environ Health Perspect 1997; 105 (Suppl. 5): 1241-1245.
  • Aikoh T, Tomokuni A, Matsukii T et al. Activation-induced cell death in human peripheral blood lymphocytes after stimulation with silicate in vitro. Int J Oncol 1998; 12: 1355–1359.
  • Broaddus VC, Yang L, Scavo LM, Ernst JD, Boylan AM. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest 1996; 98: 2050–2059.
  • Narasimhan SR, Yang L, Gerwin BI, Broaddus VC. Resistance of pleural mesothelioma cell lines to apoptosis: relation to expression of Bcl-2 and Bax. Am J Physiol 1998; 275: L165–L171.
  • Zanella CL, Timblin CR, Cummins A et al. Asbestos-induced phosphorylation of epidermal growth factor receptor is linked to c-fos and apoptosis. Am J Physiol 1999; 277; L684–L693.
  • Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994; 15: 7–10.
  • Ma Y, Ogino T, Kawabata T, Li J, Eguchi K, Okada S. Cupric nitrilotriacetate-induced apoptosis in HL-60 cells association with lipid peroxidation, release of cytochrome C from mitochondria, and activation of caspase-3. Free Radic Biol Med 1999; 27: 227–233.
  • Hawkins RA, Sangster K, Arends MJ. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J Pathol 1998; 185: 61–70.
  • Kamp DW, Weitzman SA. Asbestosis: clinical spectrum and pathogenic mechanisms. Proc Soc Exp Biol Med 1997; 214: 12–26.
  • Poli G, Parola M. Oxidative damage and fibrogenesis. Free Radic Biol Med 1997; 22: 287–305.
  • Chojkier M, Houglum K, Solis-Herruzo J, Brenner DA. Stimulation of collagen gene expression by ascorbic acid in cultured human fibroblasts. A role for lipid peroxidation?J Biol Chem 1989; 264: 16957–16962.
  • Parola M, Pinzani M, Casini A et al. Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen a1(I) gene expression in human liver fat-storing cells. Biochem Biophys Res Commit 1993; 194: 1044–1050.
  • Geesin JC, Hendricks LJ, Falkenstein PA, Gordon JS, Berg RA. Regulation of collagen synthesis by ascorbic acid: characterization of the role of ascorbate-stimulated lipid peroxidation. Arch Biochem Biophys 1991; 290: 127–132.
  • Houglum K, Brenner DA, Chojkier M. d-a-Tocopherol inhibits collagen a1(I) gene expression in cultured human fibroblasts. Modulation of constitutive collagen gene expression by lipid peroxidation. J Clin Invest 1991; 87: 2230–2235.
  • Geesin JC, Brown LJ, Gordon JS, Berg RA. Regulation of collagen synthesis in human dermal fibroblasts in contracted collagen gels by ascorbic acid, growth factors, and inhibitors of lipid peroxidation. Exp Cell Res 1993; 206: 283–290.
  • Camps J, Bargallo T, Gimenez A et al. Relationship between hepatic lipid peroxidation and fibrogenesis in carbon tetrachloride-treated rats: effect of zinc administration. Clin Sci 1992; 83: 695–700.
  • Bedossa P, Houglum K, Trautwein C, Holstege A, Chojkier M. Stimulation of collagen al (I) gene expression is associated with lipid peroxidation in hepatocellular injury: A link to tissue fibrosis? Hepatology 1994; 19: 1262-1271.
  • Poli G, Parola G, Leonarduzzi G, Pinzani M. Modulation of hepatic fibrogenesis by antioxidants. Mol Aspects Med 1993; 14: 259–264.
  • Dan D, Combs S, Purnell S. Ascorbic acid and collagen synthesis: rethinking a role for lipid peroxidation. Arch Biochem Biophys 1993; 307: 331–335.
  • Cristol J-P, Maggi M-F, Guerin MC, Torreilles J, Descomps B. Nitric oxide and lipid peroxidation. CR Seances Soc Biol Ses Fil 1995; 189: 797–809.
  • Owens MW, Milligan SA, Grisham MB. Inhibition of pleural mesothelial cell collagen synthesis by nitric oxide. Free Radic Biol Med 1996; 21: 601–607.
  • Casini A, Ceni E, Salzano R et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 1997; 25: 361–367.
  • Sempowski GD, Derdak S, Phipps RP. Interleukin-4 and interferon-7 discordantly regulate collagen biosynthesis by functionally distinct fibroblast subsets. J Cell Physiol 1996; 167: 290–296.
  • Corsini E, Luster MI, Mahler J, Craig WA, Blazka ME, Rosenthal GJ. A protective role for T lymphocytes in asbestos-induced pulmonary inflammation and collagen deposition. Am J Respir Cell Mol Biol 1994; 11: 531–539.
  • Reiser KM, Haschek WM, Hesterberg TW, Last JA. Experimental silicosis. II. Long-term effects of intratracheally instilled quartz on collagen metabolism and morphologic characteristics of rat lungs. Am J Pathol 1983; 110: 30–40.
  • Ivanova AS, Arkhipova OG. Lipid peroxidation by free radicals and its role in the pathogenesis of silicosis. Prac Lek 1981; 33: 46–49.
  • Brody AR. Asbestos-induced lung disease. Environ Health Perspect 1993; 100: 21–30.
  • Gulumian M, van Wyk JA. Lipid peroxidation by mineral dusts and fibres: ESR studies of oxygen uptake during peroxidation of lipids in multilamellar liposomes. S Afr J Sci 1991; 87: 591-594. 245. Arden MG, Adamson IYR. Collagen synthesis and degradation during the development of asbestos-induced pulmonary fibrosis. Exp Lung Res 1992; 18: 9–20.
  • Driscoll KE, Maurer JK, Higgins J, Poynter J. Alveolar macrophage cytokine and growth factor production in a rat model of crocidolite-induced pulmonary inflammation and fibrosis. J Toxicol Environ Health 1995; 46: 155–169.
  • Piguet PF, Conan MA, Grau GE, Sappino A-P, Vassalli P. Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature 1990; 344: 245–247.
  • Lemaire I, Ouellet S. Distinctive profile of alveolar macrophage-derived cytokine release induced by fibrogenic and nonfibrogenic mineral dusts. J Toxicol Environ Health 1996; 47: 465–478.
  • Piguet PF, Vesin C. Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur Respir J 1994; 7: 515–518.
  • Simeonova PP, Luster MI. Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-a response from alveolar macrophages. Am J Respir Cell Mol Biol 1995; 12: 676–683.
  • Massaguè J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990; 6: 597–641.
  • Nath KA, Grande J, Croat A, Haugen J, Kim Y, Rosenberg ME. Redox regulation of renal DNA synthesis, transforming growth factor-I3 and collagen expression. Kidney Int 1998; 53: 367–381.
  • Leonarduzzi G, Scavazza A, Biasi F et al. The lipid peroxidation and end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor pi expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J 1997; 11: 851–857.
  • Geesin JC, Hendricks LJ, Gordon JS, Berg RA. Modulation of collagen synthesis by growth factors: the role of ascorbate-stimulated lipid peroxidation. Arch Biochem Biophys 1991; 289: 6–11.
  • Goldstein RH, Fine A. Potential therapeutic initiatives for fibrogenic lung diseases. Chest 1995; 108: 848–855.
  • Mariani TJ, Roby JD, Mecham RP, Parks WC, Crouch E, Pierce RA. Localization of type I procollagen gene expression in silica-induced granulomatous lung disease and implication of transforming growth factor-I3 as a mediator of fibrosis. Am J Pathol 1996; 148: 151–164.
  • Krutovskikh V, Yamasaki H. The role of gap junctional intercellular communication (GJIC) disorders in experimental and human carcinogenesis. Histol Histopathol 1997; 12:761–768.
  • Krutovskikh V, Yamasaki H. The role of gap junctional intercellular communication (GJIC) disorders in experimental and human carcinogenesis. Histol Histopathol 1997; 12:761–768.
  • Yamasaki H. Role of disrupted gap junctional intercellular communication in detection and characterization of carcinogens. Mutat Res 1996; 365: 91–105.
  • De Haan LHJ, Bosselaers I, Jongen WMF, Zwijsen RML, Koeman JH. Effect of lipids and aldehydes on gap-junctional intercellular communication between human smooth muscle cells. Carcinogenesis 1994; 15: 253–256.
  • Upham BL, Kang K-S, Cho H-Y, Trosko JE. Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis 1997; 18: 37–42.
  • Kojima T, Mitaka T, Mizuguchi T, Mochizuki Y. Effects of oxygen radical scavengers on connexins 32 and 26 expression in primary cultures of adult rat hepatocytes. Carcinogenesis 1996; 17: 537–544.
  • Guan X, Hardenbrook J, Fernstrom MJ, Chaudhuri R, Malkinson AM, Ruch RJ. Down-regulation by butylated hydroxytoluene of the number and function of gap junctions in epithelial cell lines derived from mouse lung and rat liver. Carcinogenesis 1995; 16: 2575–2582.
  • Stahl W, Nicolai S, Briviba K et al. Biological activities of natural and synthetic carotenoids: induction of gap junctional communication and singlet oxygen quenching. Carcinogenesis 1997; 18: 89–92.
  • Mills LJ, Nelson SM, Malcolm AR. Effects of selected anti-tumor-promoting chemicals on metabolic cooperation between Chinese hamster V79 cells. Toxicol Appl Pharmacol 1994; 126: 338–344.
  • Linnainmaa K, Pelin-Enlund K, Jantunen K et al. Chromosomal damage and gap junctional intercellular communication in mesothelioma cell lines and cultured human primary mesothelial cells treated with MMMF, asbestos, and erionite. In: Brown RC, Hoskins JA, Johnson NF. (Eds) Mechanisms in Fibre Carcinogenesis. NATO ASI Series, Vol. 223. New York: Plenum, 1991; 327-334.
  • Chamberlain M. Effect of mineral dusts on metabolic cooperation between Chinese hamster V79 cells in vitro. Environ Health Perspect 1983; 51: 5–9.
  • Vaca CE, Wilhelm J, Harms-Ringdahl M. Interaction of lipid peroxidation products with DNA. A review. Mutat Res 1988; 195: 137–149.
  • Medeiros MHG, Carvalho VM, Farias LP, Loureiro APM. DNA damage induced by secondary lipid oxidation products. Ciência Cultura 1995; 47: 336–339.
  • Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic Biol Med 1995; 18: 1033–1077.
  • Floyd RA, Watson JJ, Wong PK, Altmiller DH, Richard RC. Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Radic Res Commun 1986; 1: 163–172.
  • Turk PW. Weitzman SA. Free radical adduct 8-0H-deoxyguanosine affects activity of HPA 11 and MSP I restriction endonucleases. Free Radic Res 1995; 23: 255–258.
  • Marnett U. Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis 1987; 8: 1365–1373.
  • Augusto 0. Alkylation and cleavage of DNA by carbon-centered radical metabolites. Free Radic Biol Med 1993; 15: 329–336.
  • Weitberg AB, Corvese D. Hydroxy- and hydroperoxy-6,8,11,14-eicosatetraenoic acids induce DNA strand breaks in human lymphocytes. Carcinogenesis 1989; 10: 1029–1031.
  • Frankel EN, Neff WE, Brooks DD, Fujimoto K. Fluorescence formation from the interaction of DNA with lipid oxidation degradation products. Biochim Biophys Acta 1987; 919: 239–244.
  • Esterbauer H, Eckl P, Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat Res 1990; 238: 223–233.
  • Benamira M, Johnson K, Chaudhary A, Bruner K, Tibbetts C, Marnett U. Induction of mutations by replication of malondialdehyde-modified M13 DNA in Escherichia coli: determination of the extent of DNA modification, genetic requirements for mutagenesis, and types of mutations induced. Carcinogenesis 1995; 16: 93–99.
  • Park J-W, Floyd RA. Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA. Free Radic Biol Med 1992; 12: 245–250.
  • Zastawny TH, Altman SA, Randers-Eichhorn Let al. DNA base modifications and membrane damage in cultured mammalian cells treated with iron ions. Free Radic Biol Med 1995; 18: 1013–1022.
  • Winter CK, Segall HJ, Haddon WF. Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro. Cancer Res 1986; 46: 5682–5686.
  • Kikugawa K, Taguchi K, Maruyama T. Reinvestigation of the modification of nucleic acids with malondialdehyde. Chem Pharm Bull 1987; 35: 3364–3369.
  • Marnett U. DNA adducts of a-13-unsaturated aldehydes and dicarbonyl compounds. In: Hemminki K, Dipple A, Shuker DEG, Kadlubar FF, Segerbäck D, Bartsch H. (Eds) DNA Adducts: Identification and Biological Significance, No. 125: Lyon: IARC, 1994; 151-163.
  • El Ghissassi F, Barbin A, Nair J, Bartsch H. Formation of 1 ,N6- ethenoadenine and 3,N4-ethenocytosine by lipid peroxidation products and nucleic acid bases. Chem Res Toxicol 1995; 8: 278–283.
  • Sodum RS, Chung F-L. Stereoselective formation of in vitro nucleic acid adducts by 2,3-epoxy-4-hydroxynonenal. Cancer Res 1991; 51: 137–143.
  • Nair J, Barbin A, Guichard Y, Bartsch H. 1,N6-ethenodeoxy-adenosine and 3,N4-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabelling. Carcinogenesis 1995; 16: 613–617.
  • Basu AK, O'Hara SM, Vallaclier P, Stone K, Mols 0, Marnett U. Identification of adducts by reaction of guanine nucleosides with malondialdehyde and structurally related aldehydes. Chem Res Toxicol 1988; 1: 53–59.
  • Hadley M, Draper Fill. Isolation of a guanine-malondialdehyde adduct from rat and human urine. Lipids 1990; 25: 82–85.
  • Chaudhary AK, Nokubo M, Reddy GR et al. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 1994; 265: 1580–1582.
  • Koh YH, Yoon SJ, Park J-W. Lipid peroxidation product-mediated DNA damage and mutagenicity. J Biochem Mol Biol 1997; 30: 188–193.
  • Møller P, Wallin H. Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutat Res 1998; 410: 271–290.
  • Burcham PC. Genotoxic lipid peroxidation products: their DNA-damaging properties and role in formation of endogenous DNA adducts. Mutagenesis 1998; 13: 287–305.
  • Yegles M, Saint-Etienne L, Reiner A, Janson X, Jaurand MC. Induction of metaphase and anaphase/telophase abnormalities by asbestos fibres in rat pleural mesothelial cells in vitro. Am J Respir Cell Mol Biol 1993; 9: 186–191.
  • Libbus BL, Craighead JE. Chromosomal translocations with specific breakpoints in asbestos-induced rat mesotheliomas. Cancer Res 1988; 48: 6455–6461.
  • Pairon JC, Jaurand MC, Itheuang L, Janson X, Brochard P, Bignon J. Sister chromatid exchanges in human lymphocytes treated with silica. Br J Indust Med 1990; 47: 110–115.
  • Donmez H, Ozkul Y, Ugak R. Sister chromatid exchange frequency in inhabitants exposed to asbestos in Turkey. Mutat Res 1996; 361: 129–132.
  • Liu X, Keane MJ, Thong B-Z, Ong T-M, Wallace WE. Micronucleus formation in V79 cells treated with respirable silica dispersed in medium and in simulated pulmonary surfactant. Mutat Res 1996; 361: 89–94.
  • Dopp E, Schuler M, Schiffmann D, Eastmond DA. Induction of micronuclei, hyperdiploidy and chromosomal breakage affecting the centric/pericentric regions of chromosomes 1 and 9 in human amniotic fluid cells after treatment with asbestos and ceramic fibres. Mutat Res 1997; 377: 77–87.
  • Hei TK, Piao CQ, He ZY, Vannais D, Waldren CA. Chrysotile fiber is a strong mutagen in mammalian cells. Cancer Res 1992; 52: 6305–6309.
  • Thong B-Z, Whong W-Z, Ong T-M. Detection of mineral-dust-induced DNA damage in two mammalian cell lines using the alkaline single gel/comet assay. Mutat Res 1997; 393: 181–187.
  • Kasai H, Nishimura S. DNA damage induced by asbestos in the presence of hydrogen peroxide. GANN (Japanese J Cancer Res) 1984; 75: 841–844.
  • Marczynski B, Czuppon AB, Marek W, Reichel G, Baur X. Increased incidence of DNA-double strand breaks and anti-ds DNA antibodies in blood of workers occupationally exposed to asbestos. Hum Exp Toxicol 1994; 13: 3–9.
  • Daniel LN, Mao Y, Wang T-CL et al. DNA strand breakage, thymine glycol production, and hydroxyl radical generation induced by different samples of crystalline silica in vitro. Environ Res 1995; 71: 60–73.
  • Berger M, de Hazen M, Nejjari A et al. Radical oxidation reactions of the purine moiety of 2'-deoxyfibonucleosides and DNA by iron-containing minerals. Carcinogenesis 1993; 14:41–46.
  • Yamano Y, Kagawa J, Hanaoka T et al. Oxidative DNA damage induced by silica in vivo. Environ Res 1995; 69: 102–107.
  • Marczynski B, Kerenyi T, Marek W, Baur X. Induction of DNA damage after rats exposure to crocidolite asbestos fibers. In: Davis JMG, Jaurand MC. (Eds) Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres. NATO ASI Series, vol. H85. Berlin: Springer, 1994; 227-232.
  • Leanderson P, Soderkvist P, Tagesson C, Axelson O. Formation of 8-hydroxydeoxyguanosine by asbestos and man made mineral fibres. Br J Indust Med 1988; 45: 309–311.
  • Fung H, Kow YW, van Houten B, Mossman BT. Patterns of 8-hydroxydeoxyguanosine formation in DNA and indications of oxidative stress in rat and human pleural mesothelial cells after exposure to crocidolite asbestos. Carcinogenesis 1997; 18: 825–832.
  • Lund LG, Williams MG, Dodson RF, Aust AE. Iron associated with asbestos bodies is responsible for the formation of single-strand breaks in pX174 RFT DNA. Occup Environ Med 1994; 51: 200–204.
  • Ghio AJ, Kennedy TP, Stonehuerner JG, Crumbliss AL, Hoidal JR. DNA strand breaks following in vitro exposure to asbestos increase with surface-complexed [Fe']. Arch Biochem Biophys 1994; 311: 13–18.
  • Aust AE, Chao C-C, Lund LG. Hydrogen peroxide increases the iron-catalysed induction of DNA single-strand breaks by asbestos. Ann Occup Hygiene 1994; 38: 595–601.
  • Chao C-C, Park S-H, Aust AE. Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells. Arch Biochem Biophys 1996; 326: 152–157.
  • Gabrielson EW, Rosen GM, Grafstrom RC, Strauss KE, Harris CC. Studies on the role of oxygen radicals in asbestos-induced cytopathology of cultured human lung mesothelial cells. Carcinogenesis 1986; 7: 1161–1164.
  • Emerit I, Jaurand MC, Saint-Etienne L, Levy A. Formation of a clastogenic factor by asbestos-treated rat pleural mesothelial cells. Agents Actions 1991 34: 410–415.
  • Mahmood N, Khan SG, Ali S, Athar M, Rahman Q. Asbestos induced oxidative injury to DNA. Ann Occup Hygiene 1993; 37: 315–319.
  • Mahmood N, Khan SG, Athar M, Rahman Q. Differential role of hydrogen peroxide and organic peroxides in augmenting asbestos-mediated DNA damage: Implications for asbestos induced carcinogenesis. Biochem Biophys Res Commun 1994; 200: 687–694.
  • Howden PJ, Faux SP. Fibre-induced lipid peroxidation leads to DNA adduct formation in Salmonella typhimurium TA104 and rat lung fibroblasts. Carcinogenesis 1996; 17: 413–419.
  • Ip C, Carter CA, Ip MM. Requirement of essential fatty acid for mammary tumorigenesis in the rat. Cancer Res 1985; 45: 1997–2001.
  • Newmark HL, Wargovich MJ, Bruce WR. Colon cancer and dietary fat, phosphate, and calcium: a hypothesis. J Natl Cancer Inst 1984; 72: 1323–1325.
  • Aylsworth CF, Welsch CW, Kabara JJ, Trosko JE. Effects of fatty acids on gap junctional communication: possible role in tumour promotion in dietary fat. Lipids 1987; 22: 445–454.
  • Henschler D, Eder E. Structure-activity relationships of alpha, beta-unsaturated carbonylic compounds. IARC Sci Publ 1986; 70: 197–205.
  • Brambilla G, Sciaba L, Faggin Pet al. Cytotoxicity, DNA frag-mentation and sister chromatid exchange in Chinese hamster ovary cells exposed to the lipid peroxidation product 4-hydroxynonenal and homologous aldehydes. Mutat Res 1986; 171: 169–176.
  • Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest 1982; 47: 412–426.
  • Serhan C, Anderson P, Goodman E, Dunham P, Weissmann G. Phosphatidate and oxidized fatty acids are calcium ionophores. Studies employing arsenazo III in liposomes. J Biol Chem 1981; 256: 2736–2741.
  • Cerruti PA. Prooxidant states and tumor promotion. Science 1985; 227: 375–381.
  • Bull AW, Nigro ND, Golembieski WA, Crissmann JD, Marnett U. In vivo stimulation of DNA synthesis and induction of ornithine decarboxylase in rat colon by fatty acid hydroperoxides, autoxidation products of unsaturated fatty acids. Cancer Res 1984; 44: 4924–4928.
  • Earles SM, Bronstein JC, Winner DL, Bull AW. Metabolism of oxidized linoleic acid: characterization of 13-hydroxyoctadecadienoic acid dehydrogenase activity from rat colonic tissue. Biochim Biophys Acta 1991; 1081: 174–180.
  • Chung F-L, Chen H-JC, Guttenplan JB, Nishikawa A, Hard GC. 2,3-Epoxy-4-hydroxynonanal as a potential tumor-initiating agent of lipid peroxidation. Carcinogenesis 1993; 14:2073–2077.
  • Shamberger RJ, Andreone TL, Willis CE. Antioxidants and cancer, IV. Initiating activity of malondialdehyde as a carcinogen. J Natl Cancer Inst 1974; 53: 1771–1773.
  • Fisher SM, Ogle S, Marnett LJ, Nesnow S, Slaga TJ. The lack of initiating and/or promoting activity of sodium malondialdehyde on SENCAR mouse skin. Cancer Lett 1983; 19: 61–66.
  • Hirose M, Thamavit W, Asamoto M, Osawa T, Ito N. Inhibition of glutathione 5-transferase P type-positive foci development by linoleic acid hydroperoxides and their secondary oxidative products in a rat in vivo mid-term test for liver carcinogens. Toxicol Lett 1986; 32: 51–58.
  • Liepkalns VA, Icard-Liepkalns C, Cornwell DG. Regulation of cell division in a human glioma cell clone by arachidonic acid and a-tocopherolquinone. Cancer Lett 1982; 15: 173–178.
  • Hauptlorenz S, Esterbauer H, Moll W, Pumpel R, Schauenstein E, Puschendorf B. Effects of the lipid peroxidation product 4-hydroxynonenal and related aldehydes on proliferation and viability of cultured Ehrlich ascites tumor cells. Biochem Pharmacol 1985; 34: 3803–3809.
  • Rossi MA, Cecchini G. Lipid peroxidation in hepatomas of different degrees of deviation. Cell Biochem Funct 1983; 1: 49–54.
  • Barrera G, Brossa 0, Fazio VM et al. Effects of 4-hydroxynonenal, a product of lipid peroxidation, on cell proliferation and ornithine decarboxylase activity. Free Radic Res Commun 1991; 14: 81–89.
  • Wawra E, Zollner H, Schaur RJ, Tillian HM, Schauenstein E. The inhibitory effect of 4-hydroxynonenal on DNA-polymerases alpha and beta from rat liver and rapidly dividing Yoshida ascites hepatoma. Cell Biochem Funct 1986; 4: 31–36.
  • Cornwell DG, Huttner JJ, Milo GE, Panganamala RV, Sharma HM, Geer JC. Polyunsaturated fatty acids, vitamin E, and the proliferation of aortic smooth muscle cells. Lipids 1979; 14: 194–207.
  • Huttner JJ, Milo GE, Panganamala RV, Cornwell DG. Fatty acids and the selective alteration of in vitro proliferation in human fibroblast and guinea pig smooth muscle cells. In vitro 1978; 14: 854–859.
  • Gavino VC, Miller JS, Ikharebha SO, Milo GE, Cornwell DG. Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J Lipid Res 1981; 22: 763–769.
  • Masotti L, Casali E, Galeotti T. Lipid peroxidation in tumour cells. Free Radic Biol Med 1988; 4: 377–386.
  • Poli G, Dianzani MU, Cheesman ICH, Slater TF, Lang J, Esterbauer H. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tertrachloride or ADP-iron in isolated rat liver hepatocytes and rat liver microsomal suspensions. Biochem J 1985; 227: 629–638.
  • Camandola S, Scavazza A, Leonarduzzi G et al. Biogenic 4-hydroxy-2-nonenal activates transcription factor AP-1 but not NF-KB in cells of the macrophage lineage. Biofactors 1997; 6: 173–179.
  • Creuzer T, Grube R, Wutte A, Zarkovic N, Schaur RJ. 4-Hydroxynonenal modifies the effects of serum growth factors on the expression of the c-fos proto-oncogene and the proliferation of Hela carcinoma cells. Free Radic Biol Med 1998; 25: 42-49.
  • Mossman BT. Carcinogenesis and related cell and tissue responses to asbestos: a review. Ann Occup Hygiene 1994; 38: 617–624.
  • Saffiotti U, Williams AO, Daniel LN, Kaighn ME, Mao Y, Shi X. Carcinogenesis by crystalline silica: animal, cellular, and molecular studies. In: Castranova V, Vallyathan V, Wallace WE. (eds) Silica-induced Lung Diseases. Boca Raton: CRC Press, 1996; 345–381.
  • Stanton MF, Layard M, Tegeris A et al. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst 1981; 67: 965–975.
  • Donaldson K, Brown RC, Brown GM. New perspectives on basic mechanisms in lung disease: 5. Respirable industrial fibres: mechanisms of pathogenicity. Thorax 1993; 48: 390–395.
  • Fournier J, Guignard J, Nejjari A, Zalma R, Pezerat H. The role of iron in the redox surface activity of fibres. Relation to carcinogenicity. In: Brown RC, Hoskins JA, Johnson NE (Eds) Mechanisms in Fibre Carcinogenesis. NATO ASI Series, vol. 223. New York: Plenum, 1991; 407-414.
  • Szyba K, Lange A. Presentation of benzo(a)pyrene to microsomal enzymes by asbestos fibers in the Salmonella/mammalian microsome mutagenicity test. Environ Health Perspect 1983; 51: 337–341.
  • Hei TK, He ZY, Piao CQ, Waldren C. The mutagenicity of mineral fibres. In: Brown RC, Hoskins JA, Johnson NE (Eds) Mechanisms in Fibre Carcinogenesis. NATO ASI Series, vol. 223. New York: Plenum, 1991; 319-325.
  • Tammilehto L, Tuomi T, Tiainen M et al. Malignant mesothelioma: clinical characteristics, asbestos mineralogy and chromosomal abnormalities of 41 patients. Eur J Cancer 1992; 28A: 1373–1379.
  • Jensen CG, Jensen LCW, Rieder CL, Cole RW, Ault JG. Long crocidolite asbestos fibers cause polyploidy by sterically blocking cytokinesis. Carcinogenesis 1996; 17: 2013–2021.
  • Van den Hooff A. The enigmatic role of asbestos in malignancies of the lung. Anticancer Res 1986; 6: 199–202.
  • Hesterberg TW, Brody AR, Oshimura M, Barrett JC. Asbestos and silica induce morphologic transformation of mammalian cells in culture: A possible mechanism. In: Goldsmith DF, Winn DM, Shy CM. (eds) Silica, Silicosis and Cancer. New York: Praeger, 1986,177–190.
  • Saffiotti U, Daniel LN, Mao Y, SM X, Williams AO, Kaighn ME. Mechanisms of carcinogenesis by crystalline silica in relation to oxygen radicals. Environ Health Perspect 1994; 102 (Suppl 10): 159-164.
  • Williams AO, Knapton AD, Saffiotti U. Growth factors and gene expression in silica-induced fibrogenesis and carcinogenesis. Appl Occup Environ Hygiene 1995; 10: 1089–1098.
  • Bielefeldt-Ohmann H, Jarnicki AG, Fitzpatrick DR. Molecular pathobiology and immunology of malignant mesothelioma. J Pathol 1996; 178: 369–378.
  • Hughes JM, Weill H. Asbestosis as a precursor of asbestos related lung cancer: results of a prospective mortality study. Br J Indust Med 1991; 48: 229–233.
  • Dubes GR, Mack LR. Asbestos-mediated transfection of mammalian cell cultures. In Vitro Cell Dev Biol 1988; 24: 175-182.
  • Gan L, Savransky EF, Easy TM, Johnson EM. Transfection of human mesothelial cells mediated by different asbestos fiber types. Environ Res 1993; 62: 28–42.
  • Janssen YMW, Heintz NII, Marsh JP, Borm PJA, Mossman BT. Induction of c-fos and c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am J Respir Cell Mol Biol 1994; 11: 522–530.
  • Gao H, Brick J, Ong S-H, Miller M, Whong W-Z, Ong T-M. Selective hyperexpression of c-jun oncoprotein by glass fiber-and silica-transformed BALB/c-3T3 cells. Cancer Lett 1997; 112: 65–69.
  • Marsella JM, Liu BL, Vaslet CA, Kane AB. Susceptibility of p-53-deficient mice to induction of mesothelioma by crocidolite asbestos fibers. Environ Health Perspect 1997; 105 (Suppl 5): 1069-1072.
  • Jajte J, Lao I, Wisniewska-knypl JM. Enhanced lipid peroxidation and lysosomal enzyme activity in the lungs of rats with prolonged pulmonary deposition of crocidolite asbestos. Br J Indust Med 1987; 44: 180–186.
  • Rahman Q, Casciano DA. Involvement of superoxide radical in the toxicity of mineral fibers. In: Beck EG, Bignon J. (eds) In Vitro Effects of Mineral Dusts. NATO ASI Series, vol. G3. Berlin: Springer, 1985; 483-488.
  • Faux SP, Howden PJ. Possible role of lipid peroxidation in the induction of NF-KB and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E. Environ Health Prospect 1997; 105 (Suppl. 5): 1127-1130.
  • Janssen YMW, Heintz NH, Mossman BT. Induction of c-fos and c-jun proto-oncogene expression by asbestos is ameliorated by N-acetyl-L-cysteine in mesothelial cells. Cancer Res 1995; 55: 2085–2089.
  • De Toranzo EGD, Castro JA. Reaction of 4-hydroxynonenal with some thiol-containing radioprotective agents or their active metabolites. Free Radic Biol Med 1994; 17: 605–607.
  • Hartley DP, Kroll DJ, Petersen DR. Prooxidant-initiated lipid peroxidation in isolated rat hepatocytes: detection of 4-hydroxynonenal- and malondialdehyde-protein adducts. Chem Res Toxicol 1997; 10: 895–905.
  • Rauli S, Puppo MD, Magni F, Kienle MG. Validation of malondialdehyde and 4-hydroxy-2-transnonenal measurement in plasma by NICI-GC-MS. J Biochem 1998; 123: 918–923.
  • Gulumian M, Ambaram K, Verdoon GH. Identification and quantification of fibre-induced lipid peroxidation products by GC-MS. In: Davies JMG, Jaurand MC. (Eds) Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres. NATO ASI Series, vol. H85. Berlin: Springer, 1994; 417-424.
  • Gulumian M. The role of oxidative stress in diseases caused by mineral dusts and fibres: current status and future of prophylaxis and treatment. Mol Cell Biochem 1999; 196: 69–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.