Publication Cover
Redox Report
Communications in Free Radical Research
Volume 7, 2002 - Issue 3
247
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Chemical regulation of nitric oxide: a role for intracellular myoglobin?

&
Pages 131-136 | Published online: 19 Jul 2013

  • Furchgott RF, Zawadzki JV, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetyl choline. Nature 1980; 288: 373–376.
  • Ignarro U, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84: 9265–9269.
  • Giulivi C, Pederoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038–11043.
  • Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetyl choline in atherosclerotic coronary arteries. N Engl J Med 1986; 315: 1046–1051.
  • Hollenberg SM, Klein LW, Parrillo JE et al. Coronary endothelial dysfunction after heart transplantation predicts allograft vasculopathy and cardiac death. Circulation 2001; 104: 3091–3096.
  • Tanner FC, Meier P, Greutert H, Champion C, Nabel EG, Luscher TF. Nitric oxide modulates expression of cell cycle regulatory proteins: a cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation 2000; 101: 1982–1989.
  • Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362: 801–809.
  • Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999; 138: 5419–S420.
  • Lee YC, Martin E, Murad F. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation. Proc Natl Acad Sci USA 2000;97: 10763–10768.
  • Zhao Y, Brandish PE, Ballou DP, Marietta MA. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci USA 1999; 96: 14753–14758.
  • Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898–1902.
  • Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–936.
  • Lancaster Jr JR, Hibbs JB Jr. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci USA 1990;87: 1223–1227.
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620–1624.
  • Gross SS, Lane P. Physiological reactions of nitric oxide and hemoglobin: a radical rethink. Proc Natl Acad Sci USA 1999; 96: 9967–9969.
  • Doyle MP, Hoekstra JW. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins J Inorg Biochem 1981; 14: 351–358.
  • Kalyanaraman B. Detection of nitric oxide by electron spin reson-ance in chemical, photochemical, cellular, physiological, and patho-physiological systems. Methods Enzymol 1996; 268: 168–187.
  • Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 1998; 391: 169–173.
  • Lancaster Jr JR. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 1994; 91: 8137–8141.
  • Witting PK, Douglas DJ, Mauk AG. Reaction of human myoglobin and nitric oxide. Heme iron or protein sulfhydryl(s) nitrosation dependence on the absence or presence of oxygen. J Biol Chem 2001;276: 3991–3998.
  • Myers PR, Minor RL, Guerra R, Bates JN, Harrison DG. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble 5-nitrosocysteine than nitric oxide. Nature 1990; 345: 161–163.
  • Ignarro U, Lippton H, Edwards JC et al. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 1981; 21: 739–749.
  • Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380: 221–226.
  • Ferranti P, Malorni A, Mamone G, Sannolo N, Marino G. Characterisation of S-nitrosohaemoglobin by mass spectrometry. FEBS Lett 1997; 400: 19–24.
  • Chan NL, Rogers PH, Arnone A. Crystal structure of the S-nitroso form of liganded human hemoglobin. Biochemistry 1998; 37: 16459–16464.
  • McMahon TJ, Stamler JS. Concerted nitric oxide/oxygen delivery by hemoglobin. Methods Enzymol 1999; 301: 99–114.
  • Pawloski JR, Hess DT, Stamler JS. Export by red blood cells of nitric oxide bioactivity. Nature 2001; 409: 622–626.
  • Patel R, Hogg N, Spencer NY, Kalyanaraman B, Matalon S, Darley-Usmar VM. Biochemical characterization of human S-nitrosohemoglobin. Effects on oxygen binding and transnitrosation. J Biol Chem 1999; 274: 15487–15492.
  • Goldstein S, Czapski G. Mechanism of the nitrosation of thiols and amines by oxygenated NO solutions: the nature of the nitrosating intermediates J Am Chem Soc 1996; 118: 3419-3425.
  • Thomas DD, Liu X, Kantrow SP, Lancaster JR. The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and 02. Proc Natl Acad Sci USA 2001; 98: 355–360.
  • Gow AJ, Buerk DG, Ischiropoulos H. A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem 1997;272: 2841–2845.
  • Singh RJ, Hogg N, Joseph J, Kalyanaraman B. Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 1996; 271: 18596–18603.
  • Hogg N. Biological chemistry and clinical potential of S-nitrosothiols. Free Radic Biol Med 2000; 28: 1478–1486.
  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 1999; 284: 805–808.
  • Stubauer G, Giuffre A, Sarti P. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. J Biol Chem 1999;274: 28128–28133.
  • Jourd'heuil D, Laroux FS, Miles AM, Wink DA, Grisham MB. Effect of superoxide dismutase on the stability of S-nitrosothiols. Arch Biochem Biophys 1999; 361: 323–330.
  • Muller B, Kleschyov AL, Stoclet JC. Evidence for N-acetylcysteine-sensitive nitric oxide storage as dinitrosyl-iron complexes in lipopolysaccharide-treated rat aorta. Br J Pharmacol 1996; 123: 1281–1285.
  • Mülsch A, Mordvintec P, Vanin AF, Busse R. The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron(II) complex is stored in a protein-bound form in vascular tissue and is released by thiols. FEBS Lett 1991; 294: 252–256.
  • Perkoff GT, Tyler FH. Intracellular distribution of myoglobin. Metabolism 1958;7: 751–756.
  • Brunori M. Nitric oxide, cytochrome-c oxidase and myoglobin. Trends Biochem Sci 2001; 26: 21–23.
  • Merx MW, Flogel U, Stumpe T, Godecke A, Decking UK, Schrader J. Myoglobin facilitates oxygen diffusion. FASEB J 2001; 15: 1077–1079.
  • Papadopoulos S, Endeward V, Revesz-Walker B, Jurgens KD, Gros G. Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells. Proc Natl Acad Sci USA 2001; 98: 5904–5909.
  • Groebe K. An easy-to-use model for 02 supply to red muscle. Validity of assumptions, sensitivity to errors in data. Biophys J 1995;68: 1246–1269.
  • Qiu Y, Sutton L, Riggs AF. Identification of myoglobin in human smooth muscle. J Biol Chem 1998; 273: 23426–23432.
  • Hubbard SR, Hendrickson WA, Lambright DG, Boxer SG. X-ray crystal structure of a recombinant human myoglobin mutant at 2.8A resolution. J Mol Biol 1990; 213: 215–218.
  • Garry DJ, Ordway GA, Lorenz JN et al. Mice without myoglobin. Nature 1998; 395: 905–908.
  • Gödecke A, Flögel U, Zanger K et al. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci USA 1999; 96: 10495–10500.
  • Garry DJ, Meeson A, Yan Z, Williams RS. Life without myoglobin. Cell Mol Life Sci 2000; 57: 896–898.
  • Brunori M. Nitric oxide moves myoglobin centre stage. Trends Biochem Sci 2001; 26: 209–210.
  • Flögel U, Merx MW, Gödecke A, Decking UK, Schrader J. Myoglobin: a scavenger of bioactive NO. Proc Natl Acad Sci USA 2001; 98: 735–740.
  • Frauenfelder H, McMahon BH, Austin RH, Chu K, Groves JT. The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin. Proc Natl Acad Sci USA 2001; 98: 2370–2374.
  • Witting PK, Douglas DJ, Mauk AG. Reaction of human myoglobin and H202. Involvement of a thiyl radical produced at cysteine 110. J Biol Chem 2000; 275: 120391–120398.
  • Yang F, Phillips GN. Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J Mol Biol 1996; 256: 762–774.
  • Saville B. Release of nitrogen oxide with mercury(11)oxide Analyst 1958;83: 670-677.
  • Wakabayashi Y, Kikawada R. Effect of L-arginine on myoglobin-induced acute renal failure in the rabbit. Am J Physiol 1996; 270: F784–F789.
  • Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 1995;270: 28158–28164.
  • Stamler JS, Simon DI, Osborne JA et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992; 89: 444–448.
  • Keaney Jr JF, Gaziano JIM, Xu A et al. Low-dose alpha-tocopherol improves and high-dose alpha-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest 1994; 93: 844–851.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.