Publication Cover
Redox Report
Communications in Free Radical Research
Volume 8, 2003 - Issue 1
977
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Transplasma membrane electron transport: enzymes involved and biological function

&
Pages 3-21 | Published online: 19 Jul 2013

REFERENCES

  • Crane FL, Sun IL, Clark MG, Grebing, Löw. Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta 1985; 811: 233–264.
  • Rubinstein B, Luster DG. Plasma membrane redox activity: components and role in plant processes. Annu Rev Plant Physiol Plant Mol Biol 1993; 44: 131–155.
  • Medina MA, Ntifiez de Castro I. Plasma membrane redox systems in tumor cells. Protoplasma 1995; 184: 268–272.
  • Desjardins P, Frost E, Morais R. Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Mol Cell Biol 1985; 5: 1163–1169.
  • King MP, Attardi G. Human cells lacking mtDNA: re-population with exogenous mitochondria by complementation. Science 1989; 246: 500–503.
  • Larm JA, Vaillant F, Linnane AW, Lawen A. Up-regulation of theplasma membrane oxidoreductase as a prerequisite for the viability of human Namalwa p° cells. J Biol Chem 1994; 269: 30097–30100.
  • Martinus RD, Linnane AW, Nagley P. Growth of p° human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase. Biochem Mol Biol Int 1993; 31: 997–1005.
  • Brightman AO, Wang J, Miu RK- et al. A growth factor- and hormone-stimulated NADH oxidase from rat liver plasma membrane. Biochim Biophys Acta 1992; 1105: 109–117.
  • Sun IL, Sun EE, Crane FL, Morré DJ, Lindgren A, Löw H. Requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci USA 1992; 89: 11126–11130.
  • Medina MA, del Castillo-Olivares A, Ntifiez de Castro I. Multifunctional plasma membrane redox systems. Bioessays 1997; 19: 977–984.
  • Baker MA, Lawen A. Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data. Antiox Redox Signal 2000; 2: 197–212.
  • Ellem KAO, Kay GF. Ferricyanide can replace pyruvate to stimulate growth and attachment of serum restricted human melanoma cells. Biochem Biophys Res Commun 1983; 112: 183–190.
  • Sun IL, Crane FL, Löw H, Grebing C. Transplasma membrane redox stimulates HeLa cell growth. Biochem Biophys Res Commun 1984; 125: 649–654.
  • Grebing C, Crane FL, Low H, Hall K. A transmembranous NADH-dehydrogenase in human erythrocyte membranes. J Bioenerg Biomembr 1984; 16: 517–533.
  • Clark MG, Partick EJ, Patten GS, Crane FL, Löw H, Grebing C. Evidence for the extracellular reduction of ferricyanide by rat liver. A trans-plasma membrane redox system. Biochem J 1981; 200: 565–572.
  • Sun IL, Crane FL. Bleomycin control of transplasma membrane redox activity and proton movement in HeLa cells. Biochem Pharmacol 1985; 34: 617–622.
  • Low H, Crane FL. The NADH oxidizing system of the plasma membrane and metabolic signal control. Protoplasma 1995; 184: 158–162.
  • Tan AS, Malik S, Lawen A, Berridge M. Adaptive responses of plasma membrane oxidoreductase system of cells defective in oxidative phosphorylation (p°). 5th International Conference on Plasma Membrane Redox Systems and their Role in Biological Stress and Disease. Hamburg, Germany; March 26-29, 2000. hap://www.vrz.uni-hamburg.ed/biologie/ialb/redox2000/abstracts/p14.html.
  • Crane FL, Sun IL, Barr R, Löw H. Electron and proton transport across the plasma membrane. J Bioenerg Biomembr 1991; 23: 773–803.
  • Sun IL, Toole-Simms W, Crane FL, Morre DJ, Low H, Chou JY. Reduction of diferric transferrin by 5V40 transformed pineal cells stimulates Na±/H+ antiport activity. Biochim Biophys Acta 1988; 938: 17–23.
  • Medina MA, Sánchez-Jiménez F, Segura JA, Ntifiez de Castro I. Transmembrane ferricyanide reductase activiyty in Erlich ascites tumor cells. Biochim Biophys Acta 1988; 946: 1–4.
  • del Castillo-Olivares A, Esteban del Valle A, Márquez J, Ntifiez de Castro I, Medina MA. Effects of protein kinase C and phosphoprotein phosphatase modulators on Erlich cell plasma membrane redox system activity. Biochim Biophys Acta 1996; 1313: 157–160.
  • Sijmons PC, Lanfermeijer FC, de Boer AH, Prins HBA, Bienfait HF. Depolarization of cell membrane potential during trans-plasma membrane electron transfer to extracellular electron acceptors in iron-deficient roots of Phaseolus vulgaris L. Plant Physiol 1984; 76: 943–946.
  • Vuletic M, Vucinic Z. Involvement of plasma membrane redox system in the generation of trans-root electrical potential difference in excised maize root. Gen Physiol Biophys 1996; 15: 477–487.
  • Vitart V, Baxter I, Doerner P, Harper JF. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J 2001; 27: 191–201.
  • Villalba JM, Gómez-Diaz C, Navarro F, Navas P. Role of transplasma membrane redox system in cell protection against oxidative stree. Trends Comp Biochem Physiol 1996; 2: 65–72.
  • Villalba JM, Crane FL, Navas P. Antioxidant role of ubiquinone in animal plasma membrane. In: Asard H, Bérczi A, Caubergs RJ. (eds) Plasma Membrane Redox Systems and their Role in Biological Stress and Disease. Dordrecht: Kluwer, 1998; 247–265.
  • Navarro F, Arroyo A, Martin SF et al. Protective role of ubiquinone in vitamin E and selenium-deficient plasma membranes. Biofactors 1999; 9: 163–170.
  • Alcain FJ, Buron MI, Villalba JM, Navas P. Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. Biochim Biophys Acta 1991; 1073: 380–385.
  • Villalba JM, Canalejo A, Rodriguez-Aguilera JC, Buron MI, Moore DJ, Navas P. NADH-ascorbate free radical and NADH-ferricyanide reductase activities represent different levels of plasma membrane electron transport. J Bioenerg Biomembr 1993; 25: 411–417.
  • May JM, Qu Z-C, Cobb CE. Recycling of the ascorbate free radical by human erythrocyte membranes. Free Radic Biol Med 2001;31: 117-124.
  • Gómez-Diaz C, Rodriguez-Aguilera JC, Barroso MP et al. Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. J Bioenerg Biomembr 1997; 29: 251–257.
  • May JM. Is ascorbic acid an antioxidant for the plasma membrane? FASEB J1999; 13: 995-1006.
  • Mehlhorn RJ, Sumida S, Packer L. Tocopheroxyl radical persistence and tocopherol consumption in liposomes and in vitamin E-enriched rat liver mitochondria and microsomes. J Biol Chem 1989; 264: 13448–13452.
  • Mendiratta S, Qu Z-C, May JM. Enzyme-dependent ascorbate recycling in human erythrocytes: role of thioredoxin reductase. Free Radic Biol Med 1998; 25: 221–228.
  • Villalba JM, Navarro F, C6rdoba F et al. Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport. Proc Natl Acad Sci USA 1995; 92: 4887–4891.
  • Santos-Ocatia C, C6rdoba F, Crane FL, Clarke CF, Navas P. Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of Saccharomyces cerevisiae. J Biol Chem 1998; 273: 8099–8105.
  • Kagan VE, Tyurina YY. Recycling and redox cycling of phenolic antioxidants. Ann NY Acad Sci 1998; 854: 425–434.
  • Navarro F, Villalba JM, Crane FL, Mackellar WC, Navas P. A phospholipid-dependent NADH-coenzyme A reductase from liver plasma membrane. Biochem Biophys Res Commun 1995; 212: 138–143.
  • Baggiolini M, Wymann MP. Turning on the respiratory burst. Trends Biochem Sci 1990; 15: 69-72.
  • Baldrige CW, Gerard RW. The extra respiration of phagocytosis. Am J Physiol 1933; 103: 235–236.
  • Klebanoff SJ. Myeloperoxidase. Proc Assoc Am Physicians 1999; 111: 383–389.
  • Dang PM-C, Cross AR, Babior BM. Assembly of the neutrophil respiratory burst oxidase: A direct interaction between p67P' and cytochrome b558. Proc Natl Acad Sci USA 2001; 98: 3001–3005.
  • Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A. Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 1996; 271: 31021–31024.
  • Alloul N, Gorzalczany Y, Itan M, Sigal N, Pick E. Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67P' and the small GTPase Racl. Biochemistry 2001; 40: 14557–14566.
  • Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G. The Rac target NADPH oxidase p67PF0x interacts preferentially with Rac2 rather than Rac 1. J Biol Chem 1996; 271: 83–88.
  • Nisimoto Y, Freeman JLR, Motalebi SA, Hirshberg M, Lambeth JD. Rac binding to p67*Ix. Structural basis for interactions of the Racl effector region and insert region with components of the respiratory burst oxidase. J Biol Chem 1997; 272: 18834–18841.
  • Wientjes FB, Hsuan JJ, Totty NF, Segal AW. p4OP', a third cytosolic component of the activation complex of the NADPH oxidase to contain a Src homology 3 domains. Biochem J1993; 296: 557-561.
  • Henderson LM, Chappell JB, Jones OT. Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an fl+ conducting channel. Biochem J1988; 251: 563-567.
  • del Castillo-Olivares A, Ntifiez de Castro I, Medina MA. Dual role of plasma membrane electron transport system in defense. Crit Rev Biochem Mol Biol 2000; 35: 197-220.
  • Heyworth PG, Shrimpton CF, Segal AW. Localization of the 47 kDa phosphoprotein involved in the respiratory-burst NADPH oxidase of phagocytic cells. Biochem J1989; 260: 243-248.
  • Leto TL, Adams AG, De Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline rich targets. Proc Natl Acad Sci USA 1994; 91: 10650–10654.
  • Finan P, Shimizu Y, Gout I et al. An 5H3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem 1994; 269: 13752–13755.
  • Henderson LM. NADPH oxidase subunit gp91*Ix: a proton pathway. Protoplasma 2001; 217: 37–42.
  • Maturana A, Arnaudeau S, Ryser S et al. Heme histidine ligands within gp91P' modulate proton coordination by phagocyte NADH oxidase. J Biol Chem 2001; 276: 30277–30284.
  • Price MO, McPhail LC, Lambeth JD, Han CH, Knaus UG, Dinauer MC. Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a non-hematopoietic system. Blood 2002; 99: 2653–2661.
  • Balla J, Jacob HS, Balla G, Nath K, Eaton JW, Vercellotti GM. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc Nall Acad Sci USA 1993; 90: 9285–9289.
  • de Grey ADNJ. The reductive hotspot hypothesis: an update. Arch Biochem Biophys 2000; 373: 295–301.
  • Garner B, van Reyk D, Dean RT, Jessup W. Direct copper reduction by macrophages. Its role in low density lipoprotein oxidation. J Biol Chem 1997; 272: 6927–6935.
  • Merker MP, Bongard RD, Kettenhofen NJ, Okamoto Y, Dawson CA. Intracellular redox status affects transplasma membrane electron transport in pulmonary arterial endothelial cells. Am J Physiol 2002; 282: L36–L43.
  • Baoutina A, Dean RT, Jessup W. Trans-plasma membrane electron transport induces macrophage-mediated low-density lipoprotein oxidation. FASEB J 2001; 15: 1580-1582.
  • Sundaresan M, Yu Z-X, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H202 for platelet-derived growth factor signal transduction. Science 1995; 270: 296–299.
  • Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000; 20: 2175–2183.
  • Griendling KK, Minieri CA, O11erenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148.
  • Souza HP, Laurindo FRM, Ziegelstein RC, Berlowitz CO, Zweier JL. Vascular NAD(P)H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control. Am J Physiol 2001; 280: H658-H667.
  • Szöcs K, Lassègue B, Sorescu D et al. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol 2002; 22: 21–27.
  • Suh Y-A, Arnold RS, Lassegue B et al. Cell transformation by the superoxide-generating oxidase Moxl. Nature 1999; 401: 79–82.
  • Lambeth JD, Cheng G, Arnold RS, Edens WE. Novel homologs of gp91P'. Trends Biochem Sci 2000; 25: 459–461.
  • Cheng G, Cao Z, Xu X, Van Meir EG, Lambeth JD. Homologs of gp91P': cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 2001; 269: 131–140.
  • Wassarman PM. Early events in mammalian fertilization. Annu Rev Cell Biol 1987; 3: 109-142.
  • Heinecke JW, Meier KE, Lorenzen JA, Shapiro BM. A specific requirement for protein kinase C in activation of the respiratory burst oxidase of fertilization. J Biol Chem 1990; 265: 7717–7720.
  • Foerder CA, Shapiro BM. Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc Natl Acad Sci USA 1977; 74: 4214–4218.
  • Deits T, Farrance M, Kay ES et al. Purification and properties of ovoperoxidase, the enzyme responsible for hardening the fertilization membrane of the sea urchin egg. J Biol Chem 1984; 259: 13525–13533.
  • Kohler H, Jenzer H. Interaction of lactoperoxidase with hydrogen peroxide. Formation of enzyme intermediates and generation of free radicals. Free Radic Biol Med 1989; 6: 323–339.
  • Foerder CA, Klebanoff SJ, Shapiro BM. Hydrogen peroxide production, chemiluminescence, and the respiratory burst of fertilization: interrelated events in early sea urchin development. Proc Nati Acad Sci USA 1978; 75: 3183–3187.
  • Heinecke JW, Shapiro BM. Superoxide peroxidase activity of ovoperoxidase, the cross-linking enzyme of fertilization. J Biol Chem 1990; 265: 9241–9246.
  • Heinecke JW, Shapiro BM. The respiratory burst oxidase of fertilization. A physiological target for regulation by protein kinase C. J Biol Chem 1992; 267: 7959–7962.
  • Bánfi B, Molnár G, Maturana A et al. A Ca'-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 2001; 276: 37594–37601.
  • Dupuy C, Ohayon R, Valent A, Noel-Hudson M-S, Dème D, Virion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. J Biol Chem 1999; 274: 37265–37269.
  • De Deken X, Wang, D, Many M-C et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 2000; 275: 23227–23233.
  • MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol 1943; 138: 512–518.
  • Aitken RJ, Harkiss D, Buckingham DW. Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev 1993; 35: 302–315.
  • Aitken RJ, Vernet P. Maturation of redox regulatory mechanisms in the epididymis. J Reprod Fertil Suppl 1998; 53: 109–118.
  • Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction 2001; 122: 497–506.
  • Yanagimachi R. Fertility of mammalian spermatozoa: its development and relativity. Zygote 1994; 2: 371–372.
  • Visconti PE, Moore GD, Bailey JL et al. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 1995; 121: 1139–1150.
  • Aitken RJ, Buckingham DW, Harkiss D, Paterson M, Fisher H, Irvine DS. The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Mol Cell Endocrinol 1996; 117: 83–93.
  • Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci 1998; 111: 645–656.
  • Lewis B, Aitken RJ. Impact of epididymal maturation on the tyrosine phosphorylation patterns exhibited by rat spermatozoa. Biol Reprod 2001; 64: 1545–1556.
  • Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 1995; 108: 2017–2025.
  • Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl 1996; 17: 276–287.
  • Aitken RJ. A free radical theory of male infertility. Reprod Fertil Dev 1994; 6: 19–23.
  • Jones R, Mann T, Sherins RJ. Peroxidative breakdown of phospholipids in human spermatozoa: spermicidal effects of fatty acid peroxides and protective action of seminal plasma. Fertil Steril 1979; 31: 531–537.
  • Shen H-M, Ong C-N. Detection of oxidative damage in human sperm and its association with sperm function and male infertility. Free Radic Biol Med 2000; 28: 529–536.
  • van Overveld FVVPC, Haenen GRMM, Rhemrev J, Vermeiden JPW, Bast A. Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chem Biol Interact 2000; 127: 151–161.
  • Koppenol WH, Liebman JF. The oxidising nature of hydroxyl radical. A comparison with the ferryl ion (Fe'). J Phys Chem 1984; 88: 99–101.
  • de Silva DM, Askwith CC, Kaplan J. Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev 1996; 76: 31–47.
  • Sun IL, Navas P, Crane FL, Morré DJ, Low H. NADH diferric transferrin reductase in liver plasma membrane. J Biol Chem 1987; 262: 15915–15921.
  • Bienfait HF. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr 1985; 17: 73–83.
  • Misra PC. Transplasma membrane electron transport in plants. J Bioenerg Biomembr 1991; 23: 425–441.
  • Buchanan SK, Smith BS, Venkatramani L et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 1999; 6: 56–63.
  • Timmerman MM, Woods JP. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum. Infect Immun 2001; 69: 7671–7678.
  • Chiu H-J, Johnson E, Schröder I, Rees DC. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP±. Structure 2001; 9: 311–319.
  • Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD. Ferric reduction of Saccharomyces cerevisiae. Molecular characterization, role in iron uptake, and transcription control by iron. Proc Natl Acad Sci USA 1992; 89: 3869–3873.
  • Dujon B, Alexandraki D, Andre B et al. Complete DNA sequence of yeast chromosome XI. Nature 1994; 369: 371–378.
  • Lesuisse E, Casteras-Simon M, Labbe P. Evidence for the Saccharo-myces cerevisiae ferrireductase system being a multicomponent electron transport chain. J Biol Chem 1996; 271: 13578–13583.
  • Yun C-W, Bauler M, Moore RE, Klebba PE, Philpott CC. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 2001; 276: 10218–10223.
  • Núñez M-T, Gaete V, Watkins JA, Glass J, Mobilization of iron from endocytic vesicles. The effects of acidification and reduction. J Biol Chem 1990; 265: 6688–6692.
  • Watkins JA, Altazan JD, Elder P et al. Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. Biochemistry 1992; 31: 5820–5830.
  • McKie AT, Barrow D, Latunde-Dada GO et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 2001; 291: 1755–1759.
  • Knöpfel M, Solioz M. Characterization of a cytochrome b558 ferric/cupric reductase from rabbit duodenal brush border membranes. Biochem Biophys Res Commun 2002; 291: 220–225.
  • Liithje S, Doring O, Heuer S, Liithen H, Bottger M. Oxidoreductases in plant plasma membranes. Biochim Biophys Acta 1997; 1331: 81–102.
  • Klausner RD, Dancis A. A genetic approach to elucidating eukaryotic iron metabolism. FEBS Lett 1994; 355: 109–113.
  • Kawai S, Suzuki S, Mon S, Murata K. Molecular cloning and identification of UTR1 of a yeast Saccharomyces cerevisiae as a gene encoding an NAD kinase. FEMS Microbiol Lett 2001; 200: 181–184.
  • Dancis A, Haile D, Yuan DS, Klausner RD. The Saccharomyces cerevisiae copper transport protein (Ctrlp). Biochemical characterization, regulation by copper and physiologic role in copper uptake. J Biol Chem 1994; 269: 25660–25667.
  • Askwith C, Eide D, Van Ho A et al. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 1994; 76: 403–410.
  • Lin S-J, Pufahl RA, Dancis A, O'Halloran TV, Culotta VC. A role for Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997; 272: 9215–9220.
  • Gunshin H, Mackenzie B, Berger UV et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482–488.
  • Fleming MD, Trenor III CC, Su MA et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene p383. Nat Genet 1997; 16: 383–386.
  • Musilková J, Kriegerbecková K, Kritsek J, Kovár J. Specific binding to plasma membrane is the first step in the uptake of non-transferrin iron by cultured cells. Biochim Biophys Acta 1998; 1369: 103–108.
  • Ntifiez MT, Alvarez X, Smith M, Tapis V, Glass J. Role of redox systems on Fe' uptake by transformed human intestinal epithelial (Caco-2) cells. Am J Physiol 1994; 267: C1582–C1588.
  • Inman RS, Wessling-Resnick M. Characterization of transferrin-independent iron transport in K562 cells. Unique properties provide evidence for multiple pathways of iron uptake. J Biol Chem 1993; 268: 8521–8528.
  • Inman RS, Coughlan MM, Wessling-Resnick M. Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport. Biochemistry 1994; 33: 11850–11857.
  • Okuyama E, Yamamoto R, Ichikawa Y, Tsubaki M. Structural basis for the electron transfer across the chromaffin vesicle membranes catalyzed by cytochrome b561: analyses of cDNA nucleotide sequences and visible absorption spectra. Biochim Biophys Acta 1998; 1383: 269–278.
  • Navas P, Sun IL, Morré DJ, Crane FL. Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide. Biochem Biophys Res Commun 1986; 135: 110–115.
  • Chueh P-J, Kim C, Cho N, Morré DM, Morré DJ. Molecular cloning and characterization of a tumor-associated, growth-related, and time-keeping hydroquinone (NADH) oxidase (tNOX) of the HeLa cell surface. Biochemistry 2002; 41: 3732–3741.
  • Sedlak D, Morré DM, Morré DJ. Drug-unresponsive and protease-resistant CNOX protein from human sera. Arch Biochem Biophys 2001; 386: 106–116.
  • Morré DM, Layman S, Lenaz G et al. The aging-related NOX protein provides a mechanism whereby ROS production and anti-oxidant defenses are transmitted to the cell's surface, adjacent cells and blood components. Proceedings of the 6th International Conference on Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease. Ravenna, Italy: March 23-26, 2002; P35.
  • Morré DJ. NADH oxidase: a multifunctional ectoprotein of the eukaryotic cell surface. In: Asard E, Bérczi A, Caubergs RJ. (eds) Plasma Membrane Redox System and their role in Biological Stress and Disease. Dordrecht: Kluwer, 1998; 121-156.
  • Morré DJ, Jacobs E, Sweeting M, de Cabo R, Morré DM. A protein disulfide interchange activity of HeLa plasma membranes inhibited by the antitumor sulfonylurea N-(4-methylphenyl-sulfony1)-N'-(4-chlorophenyl)urea (LY181984). Biochim Biophys Acta 1997; 1325: 117–125.
  • Wang S, Pogue R, Morré DM, Morré DJ. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms. Biochim Biophys Acta 2001; 1539: 192–204.
  • Kelker M, Kim C, Chueh P-J, Guimont R, Morré DM, Morré DJ. Cancer isoform of a tumor-associated cell surface NADH oxidase (tNOX) has properties of a prion. Biochemistry 2001; 40: 7351–7354.
  • Morré DJ, Sun E, Geilen C et al. Capsaicin inhibits plasma membrane NADH oxidase and growth of human and mouse melanoma lines. Eur J Cancer 1996; 32A: 1995–2003.
  • Morré DJ, Reust T. A circulating form of NADH oxidase activity responsive to the anti-tumor sulfonylurea N-4-(methylphenyl-sulfony1)-N'-(4-chlorophenyl)urea (LY181984) specific to sera from cancer patients. J Bioenerg Biomembr 1997; 29: 281–289.
  • Morré DJ, Wilkinson FE, Kim C et al. Antitumor sulfonylurea-inhibited NADH oxidase of cultured HeLa cells shed into the media. Biochim Biophys Acta 1996; 1280: 197–206.
  • Berridge MV, Tan AS. Trans-plasma membrane electron transport: a cellular assay for NADH- and NADPH-oxidase based on extracellular, superoxide-mediated reduction of the sulfonated tetrazolium salt WST-1. Protoplasma 1998; 205: 74–82.
  • Zurbriggen R, Dreyer J-L. An NADH-diaphorase is located at the cell plasma membrane in a mouse neuroblastoma cell line NB41A3. Biochim Biophys Acta 1994; 1183: 513–520.
  • Zurbriggen R, Dreyer J-L. The plasma membrane NADH-diaphorase is active during selective phases of the cell cycle in mouse neuroblastoma cell line NB41A3. Its relation to cell growth and differentiation. Biochim Biophys Acta 1996; 1312: 215–222.
  • Bulliard C, Zurbriggen R, Tornare J, Faty M, Dastoor Z, Dreyer JL. Purification of a dichlorophenol-indophenol oxidoreductase from rat and bovine synaptic membranes: tight complex association of a glyceraldehyde-3-phosphate dehydrogenase isoform, TOAD64, enolase-y and aldolase c. Biochem J 1997; 324: 555–563.
  • Kim C, Crane FL, Faulk WP, Morré DJ. Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes. J Biol Chem 2002; 277: 16441–16447.
  • Ernster L. DT-. Methods Enzymol 1967; 10: 309–317.
  • Ernster L, Lind C, Rase B. A study of the DT-diaphorase activity of warfarin-resistant rats. Eur J Biochem 1972; 25: 198–206.
  • Brar SS, Kennedy TP, Whorton AR et al. Reactive oxygen species from NAD(P)H: quinone oxidoreductase constitutively activate NF-KB in malignant melanoma cells. Am J Physiol 2001; 280: C659–C676.
  • Beyer RE, Segura-Aguilar J, Di Bernardo S et al. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Nall Acad Sci USA 1996; 93: 2528–2532.
  • Bello RI, Gomez-Diaz C, Navarro F, Alcain FJ, Villalba JM. Expression of NAD(P)H: quinone oxidoreductase 1 in HeLa cells. Role of hydrogen peroxide and growth phase. J Biol Chem 2001; 276: 44379–44384.
  • Belinsky M, Jaiswal AK. NAD(P)H: quinone oxidoreductase 1 (DT-diaphorase) expression in normal and tumor tissues. Cancer Metastasis Rev 1993; 12: 103–117.
  • Cresteil T, Jaiswal AK. High levels of expression of the NADP(H):quinone oxidoreductase (NQ01) gene in tumor cells compared to normal cells of the same origin. Biochem Pharmacol 1991; 42: 1021–1027.
  • Löw H, Crane FL. Redox function in plasma membranes. Biochim Biophys Acta 1978; 515: 141–161.
  • Winski SL, Koutalos Y, Bentley DL, Ross D. Subcellular localization of NAD(P)H: quinone oxidoreductase 1 in human cancer cells. Cancer Res 2002; 62: 1420–1424.
  • Siegel D, Gibson NW, Preusch PC, Ross D. Metabolism of mitomycin C by DT-diaphorase: role in mitomycin C-induced DNA damage and cytotoxicity in human colon carcinoma cells. Cancer Res 1990; 50: 7483–7489.
  • Dulhanty AM, Whitmore GF. Chinese hamster ovary cell lines resistant to mitomycin C under aerobic but not hypoxic conditions are deficient in DT-diaphorase. Cancer Res 1991; 51: 1860–1865.
  • Crowe RA, Taparowsky EJ, Crane FL. Ha-ras stimulates the transplasma membrane oxidoreductase activity of C3H10T1/2 cells. Biochem Biophys Res Commun 1993; 196: 844–850.
  • Medina MA, del Castillo-Olivares A, Schweigerer L. Plasma membrane redox activity correlates with N-myc expression in neuroblastoma cells. FEBS Lett 1992; 311: 99–101.
  • Alcain FJ, Villalba, JM, Low H, Crane FL, Navas P. Ceruloplasmin stimulates NADH oxidation in pig liver plasma membrane. Biochem Biophys Res Commun 1992; 186: 951–955.
  • Crane FL, Sun IL, Crowe RA, Alcain FJ, Low H. Coenzyme Q10, plasma membrane oxidase and growth control. Mol Asp Med 1994; 15: sl-sll.
  • Wolvetang EJ, Larm JA, Moutsoulas P, Lawen A. Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bc1-2 and calcineurin. Cell Growth Differ 1996; 7: 1315–1325.
  • Shibunama M, Kuroki T, Nose K. Stimulation by hydrogen peroxide of DNA synthesis, competence family gene expression and phosphorylation of a specific protein in quiescent BALB3T3 cells. Oncogene 1990; 5: 1025–1032.
  • Schieven GL, Kirihara JM, Myers DE, Ledbetter JA, Uckun FM. Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p561ck and p59fyn tyrosine kinases in human lymphocytes. Blood 1993; 82: 1212–1220.
  • Guy GR, Cairns J, Ng SB, Tan YH. Inactivation of a redox-sensitive protein phosphatase during the early events of tumor necrosis factor/interleukin-1 signal transduction. J Biol Chem 1993; 268: 2141–2148.
  • Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF--KB transcription factor and HIV-1. EMBO J 1991; 10: 2247–2258.
  • Löw H, Crane FL, Partick EJ, Clark MG. oc-Adrenergic stimulation of trans-sarcolemma electron flux in perfused rat heart. Possible regulation of Ca2+ channels by a sarcolemma redox systems. Biochim Biophys Acta 1985; 844: 142–148.
  • Harrison ML, Rathinavelu P, Arese P, Geahlen RL, Low PS. Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem 1991; 266: 4106–4111.
  • Macho A, Calzado MA, Munoz-Blanco J et al. Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ 1999; 6: 155–165.
  • Shimizu S, Narita M, Tsujimoto Y. Bc1-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483–487.
  • Thinnes FP. Evidence for extra-mitochondrial localization of the VDAC/porin channel in eukaryotic cells. J Bioenerg Biomembr 1992; 24: 71–75.
  • Vaillant F, Larm JA, McMullen GL, Wolvetang EJ, Lawen A. Effectors of the mammalian plasma membrane NADH-oxidoreductase system. Short-chain ubiquinone analogues as potent stimulators. J Bioenerg Biomembr 1996; 28: 531–540.
  • Grubb DR, Wolvetang EJ, Lawen A. Didemnin B induces cell death by apoptosis: the fastest induction of apoptosis ever described. Biochem Biophys Res Commun 1995; 215: 1130–1136.
  • Morana SJ, Wolf CM, Li J, Reynolds JE, Brown MK, Eastman A. The involvement of protein phosphatases in the activation of ICE/CED-3 protease, intracellular acidification, DNA digestion, and apoptosis. J Biol Chem 1996; 271: 18263–18271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.