Publication Cover
Redox Report
Communications in Free Radical Research
Volume 8, 2003 - Issue 4
789
Views
173
CrossRef citations to date
0
Altmetric
Research articles

Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction

, , , , , , , , & show all
Pages 205-213 | Published online: 19 Jul 2013

REFERENCES

  • Hardeland R, Reiter RJ, Poeggeler B, Tan D-X. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 1993; 17: 347–357.
  • Hardeland R, Fuhrberg B. Ubiquitous melatonin - presence and effects in unicells, plants and animals. Trends Comp Biochem Physiol 1996; 2: 25–45.
  • Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 1998; 56: 359–384.
  • Tan D-X, Manchester LC, Reiter RJ, Qi W-B, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 2000; 9: 137–159.
  • Tan D-X. Interrelationships between Melatonin and Oxidative Stress: Mechanistic Studies of the Reactions of Melatonin and its Metabolites with Free Radicals. GO ttingen: Cuvillier, 2002.
  • Tan D-X, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2: 181–197.
  • Reiter RJ, Tan D-X, Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 2002; 123: 1007–1019.
  • Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress and antioxidative defense mechanisms. Chronobiol Int 2003; 20: In press.
  • Hirata F, Hayaishi O, Tokuyama T, Senoh S. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 1974; 249: 1311–1313.
  • Hayaishi O. Properties and function of indoleamine 2,3-dioxy-genase. J Biochem (Tokyo) 1976; 79: 13P-21P.
  • Hardeland R, Poeggeler B, Balzer I, Behrmann G. Common basis of photoperiodism in phylogenetically distant organisms and its possible origins. J Interdiscipl Cycle Res 1991; 22: 122–123.
  • Hardeland R, Poeggeler B, Balzer I, Behnnann G. A hypothesis on the evolutionary origins of photoperiodism based on circadian rhythmicity of melatonin in phylogenetically distant organisms. In: Gutenbrunner C, Hildebrandt G, Moog R. (eds) Chronobiology & Chronomedicine, Frankfurt/M: Lang, 1993; 113-120.
  • Hardeland R, Balzer I, Poeggeler B et al. On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation and scavenging of free radicals. J Pineal Res 1995; 18: 104–111.
  • Hardeland R, Fuhrberg B, Behrmann G, Balzer I. Sleep-latency reducing pineal hormone melatonin as a scavenger of free radicals: hemin-catalysed formation of A1-acetyl-/V2-formy1-5-methoxykynuramine. Sleep Res 1993; 22: 621.
  • Burkhardt S, Poeggeler B, Tan D-X et al. Oxidation products formed from melatonin in various radical generating systems. In: Hardeland R. (ed) Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. GO ttingen: Cuvillier, 2001; 9–22.
  • Tan D-X, Manchester LC, Burkhardt S et al. Ar-acetyl-N2-formy1-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 2001; 15: 2294–2296.
  • Burkhardt S, Reiter RJ, Tan D-X, Hardeland R, Carbera J, Karbownik M. DNA oxidatively damaged by chromium(III) and H202 is protected by melatonin, A1-acetyl-/V2-formy1-5-methoxy-kynuramine, resveratrol and uric acid. Int J Biochem Cell Biol 2001; 33: 775–783.
  • Kennaway DJ, Hugel HM, Clarke S et al. Structure-activity studies of melatonin analogues in prepubertal male rats. Aust J Biol Sci 1988; 41: 393–400.
  • Poeggeler B, Thuermann S, Dose A, Schoenke M, Burkhardt S, Hardeland R. Melatonin's unique radical scavenging properties - roles of its functional substituents as revealed by a comparison with its structural analogs. J Pineal Res 2002; 33: 20–30.
  • Poeggeler B, Reiter RJ, Hardeland R, Tan D-X, Barlow-Walden LR. Melatonin and structurally-related endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Report 1996; 2: 179–184.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS cation radical decolorization assay. Free Radic Biol Med 1999; 26: 1231–1237.
  • Hardeland R, Poeggeler B, Niebergall R, Zelosko V. Oxidation of melatonin by carbonate radicals and chemiluminescence emitted during pyrrole ring cleavage. J Pineal Res 2003; 34: 17–25.
  • Burkhardt S, Coto-Montes A, Hardeland R. The catalase inhibitor 3-amino-1,2,4-triazole has side effects as a scavenger of superoxide anions. In: Hardeland R. (ed) Studies on Antioxidants and their Metabolites. Go ttingen: Cuvillier, 1999; 127-128.
  • Antolin I, Obst B, Burkhardt S, Hardeland R. Antioxidative protection in a high-melatonin organism: the dinoflagellate Gonyaulax polyedra is rescued from lethal oxidative stress by strongly elevated, but physiologically possible concentrations of melatonin. J Pineal Res 1997; 23: 182–190.
  • Hardeland R. Effects of catecholamines on bioluminescence in Gonyaulax polyedra (Dinoflagellata). Comp Biochem Physiol 1980; 66C: 53–58.
  • Ma YS, Chao CC, Stadtman ER. Oxidative modification of glutamine synthetase by 2,2'-azobis(2-amidinopropane) dihydrochloride. Arch Biochem Biophys 1999; 363: 129–134.
  • Kocha T, Yamaguchi M, Ohtaki H, Fukuda T, Aoyagi T. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin. Biochim Biophys Acta 1997; 1337: 319–326.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.
  • Hardeland R, Zsizsik BK. Oxidative stress in Lingulodinium polyedrum by treatment with 3-hydroxykynurenine. Moderate and lethal oxidative stress distinguished by measurements of bioluminescence. In: Hardeland R. (ed) Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. GO ttingen: Cuvillier, 2001; 210–218.
  • Hardeland R, Burkhardt S, Antolin I, Fuhrberg B, Coto-Montes A. Melatonin and 5-methoxytryptamine in the bioluminescent dinoflagellate Gonyaulax polyedra. Restoration of the circadian glow peak after suppression of indoleamine biosynthesis or oxidative stress. Adv Exp Med Biol 1999; 460: 387–390.
  • Kelly RW, Amato F, Seamark RE N-Acetyl-5-methoxy kynurenamine, a brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesis. Biochem Biophys Res Commun 1984; 121: 372–379.
  • Wendler J, Poeggeler B, Hardeland R. Chemiluminescence emitted during oxidation of resveratrol and other phenolic free radical scavengers. In: Albrecht S, Zimmermann T, Brandl H. (eds) Chemiluminescence at the Turn of the Millennium - An Indispensable Tool in Modern Chemistry, Biochemistry and Medicine. Dresden: Schweda, 2001; 216–221.
  • Wendler J, Holst S, Hardeland R et al. Phenolic and indolic radical scavengers as luminophores. In: Case JF, Herring PJ, Robison BH et al. (eds) Bioluminescence and Chemi-luminescence 2000. Singapore: World Scientific Publishers, 2001; 255-258.
  • Balzer I, Hardeland R. Action of kynuramine in a dinoflagellate: stimulation of bioluminescence in Gonyaulax polyedra. Comp Biochem Physiol 1989; 94C: 129–132.
  • Hardeland R, Coto-Montes A. Chronobiology of oxidative stress and antioxidative defense mechanisms. Rec Res Dev Comp Biochem Physiol 2000; 1: 123–137.
  • Zsizsik BK, Hardeland R. Formation of kynurenic and xanthurenic acids from kynurenine and 3-hydroxykynurenine in the dinoflagellate Lingulodinium polyedrum: role of a novel, oxidative pathway. Comp Biochem Physiol 2002; 133C: 383–392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.