Publication Cover
Redox Report
Communications in Free Radical Research
Volume 8, 2003 - Issue 5
238
Views
18
CrossRef citations to date
0
Altmetric
Articles

Thioredoxin reductase and glutathione synthesis in Plasmodium falciparum

Pages 251-255 | Published online: 19 Jul 2013

REFERENCES

  • Kanzok SM, Schirmer RH, TUrbachova I, Iozef R, Becker K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 2000; 275: 40180–40186.
  • Krnajski Z, Gilberger TW, Walter RD, Muller S. The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system. Mol Biochem Parasitol 2001; 112: 219–228.
  • Krnajski Z, Walter RD, Muller S. Isolation and functional analysis of two thioredoxin peroxidases (peroxiredoxins) from Plasmodium falciparum. Mol Biochem Parasitol 2001; 113: 303–308.
  • Rahlfs S, Becker K. Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum. Eur J Biochem 2001; 268: 1404–1409.
  • Rahlfs S, Nickel C, Deponte M, Schirmer RH, Becker K. Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism. Redox Report 2003; 8: XX–XX.
  • Schirmer RH, Muller JG, Krauth-Siegel RL. Disulfide-reductase inhibitors as chemotherapeutic agents: the design of drugs for trypanosomiasis and malaria. Angew Chem Int Edn 1995; 34: 141–154.
  • Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2000; 2: 811–820.
  • Fürber PM, Arscott LD, Williams Jr CH, Becker K, Schirmer RH. Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett 1998; 422: 311–314.
  • Lüersen K, Walter RD, Muller S. The putative 7-glutamylcysteine synthetase from Plasmodium falciparum contains large insertions and a variable tandem repeat. Mol Biochem Parasitol 1999; 98: 131–142.
  • Lüersen K, Walter RD, Muller S. Plasmodium falciparum- infected red blood cells depend on a functional de novo synthesis of glutathione attributable to an enhanced loss of glutathione. Biochem J 2000; 346: 545–552.
  • Meierjohann S, Walter RD, Muller S. The glutathione synthetase from Plasmodium falciparum. Biochem J 2002; 363: 833–838.
  • Meierjohann S, Walter RD, Muller S. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine sensitive and chloroquine resistant Plasmodium falciparum. Biochem J 2002; 368: 761–768.
  • Sztajer H, Gamain B, Aumann KD et al. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 2001; 276: 7397–7403.
  • Gratepanche S, Menage S, Touati D et al. Biochemical and electron paramagnetic resonance study of the iron superoxide dismutase from Plasmodium falciparum. Mol Biochem Parasitol 2002; 120: 237–246.
  • Wrenger C, Muller S. Isocitrate dehydrogenase of Plasmodium falciparum - energy metabolism or redox control? Eur J Biochem 2003; 270: 1775-1783.
  • Williams Jr CH, Arscott DL, Muller S et al. Thioredoxin reductase - two modes of catalysis have evolved. Eur J Biochem 2000; 267: 6110–6117.
  • Hirt RP, Muller S, Embley TM, Coombs GH. The diversity and evolution of thioredoxin reductase: new perspectives. Trends Parasitol 2002; 18: 302–308.
  • Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH Jr. The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci USA 1997; 94: 3621–3626.
  • Gilberger TW, Walter RD, Muller S. Identification and characterization of the functional amino acids at the active-site of the large thioredoxin reductase from Plasmodium falciparum. J Biol Chem 1997; 272: 29584–29589.
  • Gilberger TW, Bergmann B, Walter RD, Muller S. The role of the C-terminus for catalysis of the large thioredoxin reductase from Plasmodium falciparum. FEBS Lett 1998; 425: 407–410.
  • Wang PF, Arscott D, Gilberger TW, Muller S, Williams CH Jr. Thioredoxin reductase from Plasmodium falciparum: evidence for the interaction between the C-terminal cysteines and the active site dithiol/disulfide. Biochemistry 1999; 38: 3187–3196.
  • Krnajski Z, Gilberger TW, Walter RD, Muller S. Intersubunit interactions in Plasmodium falciparum thioredoxin reductase. J Biol Chem 2000; 275: 40874–40878.
  • Davioud-Charvet E, McLeish MJ, Veine D et al. Mechanism-based inactivation of thioredoxin reductase from Plasmodium falciparum by Mannich bases. Implications for drug design. In: Chapman SK, Perham RN, Scrutton NS. (eds) Flavins and Flavoproteins XIV. Berlin: Agency of Scientific Publications, 2002; 845-851.
  • Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Muller S. Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem 2002; 277: 25970–25975.
  • Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH. Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci USA 1998; 95: 5311–5316.
  • Dickinson DA, Forman HJ. Cellular glutathione and thiol metabolism. Biochem Pharmacol 2002; 64: 1019–1026.
  • Campbell EB, Hayward ML, Griffith OW. Analytical and preparative separation of the diastereomers of L-buthionine (SR)-sulfoximine, a potent inhibitor of glutathione biosynthesis. Anal Biochem 1991; 194: 268–277.
  • Atamna H, Ginsburg H. The malaria parasite supplies glutathione to its host cell - investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur J Biochem 1997; 250: 670–679.
  • Ayi K, Cappadoro M, Branca M, Turrini F, Arese P. Plasmodium fakiparum glutathione metabolism and growth are independent of glutathione system of host erythrocyte. FEBS Lett 1998; 424: 257–261.
  • Atamna H, Ginsburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol 1993; 61: 231–241.
  • Sidhu AB, Verdier-Pinard D, Fidock DA. Chloroquine resistance in Plasmodium fakiparum malaria parasites conferred by pfcrt mutations. Science 2002; 298: 210–213.
  • Atamna H, Ginsburg H. Heme degradation in the presence of glutathione. A proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells. J Biol Chem 1995; 270: 24876–24883.
  • Ginsburg H, Famin O, Zhang J, Krugliak M. Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 1998; 56: 1305–1313.
  • Harwaldt P, Rahlfs S, Becker K. Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterisation of a potential drug target. Biol Chem 2002; 383: 821–830.
  • Liebau E, Bergmann B, Campbell AM et al. The glutathione S-transferase from Plasmodium falciparum. Mol Biochem Parasitol 2002; 124: 85–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.