Publication Cover
Redox Report
Communications in Free Radical Research
Volume 8, 2003 - Issue 5
403
Views
22
CrossRef citations to date
0
Altmetric
Articles

Thiol-dependent peroxidases care little about homology-based assignments of function

, , &
Pages 256-264 | Published online: 19 Jul 2013

REFERENCES

  • Schonbaum GR, Chance B. Catalase. In: Boyer PD. (ed) The Enzymes, vol 13. New York: Academic Press, 1976; 363-408.
  • Klebanoff SJ, Rosen H. The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leucocytes. In: Oxygen Free Radicals and Tissue Damage; CIBA Foundation Symposium. Amsterdam: Excerpta Medica, 1979; 263–283.
  • Harman LS, Carver DK, Schreiber J, Mason R. One- or two-electron oxidation of reduced glutathione by peroxidases. J Biol Chem 1986; 261: 1642–1648.
  • Flohé L, Brigelius-Flohé R. Selenoproteins of the glutathione system. In: Hatfield DL. (ed) Selenium: Its Molecular Biology and Role in Human Health. Boston: Kluver, 2001; 157–178.
  • Ursini F, Heim S, Kiess M et al. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999; 285: 1393–1396.
  • Flohé L, Hecht HJ, Steinert P. Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med 1999; 27: 966–984.
  • Hofmann B, Hecht HJ, Flohé L. Peroxiredoxins. Biol Chem 2002; 383: 347–364.
  • Wood ZA, Schröder E, Harris RJ, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 2003; 28: 32–40.
  • Jaeschke H, Ho YS, Fisher MA, Lawson JA, Farhood A. Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress. Hepatology 1999; 29: 443–450
  • Beck MA. Selenium as an antiviral agent. In: Hatfield DL. (ed) Selenium: Its Molecular Biology and Role in Human Health. Boston: Kluver, 2001; 235–245.
  • Krieger S, Schwarz W, Ariyanayagam MR, Fairlamb AH, Krauth-Siegel RL, Clayton C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol 2000; 35: 542–552.
  • Tovar J, Wilkinson S, Mottram JC, Fairlamb AH. Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol Microbiol 1998; 29: 653–660.
  • Sherman DR, Mdluli K, Hickey MJ et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 1996; 272: 1641-1643.
  • Mills GC. Hemoglobin catabolism I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 1957; 229: 189–197.
  • Neubert D, Wojtczak AB, Lehninger AL. Purification and enzymatic identity of mitochondrial contraction-factors I and II. Proc Natl Acad Sci USA 1962; 48: 1651–1658.
  • Flohé L, Loschen G, Giinzler WA, Eichele E. Glutathione peroxidase V. The kinetic mechanism. Hoppe-Seyler's Z Physiol Chem 1972; 353: 987–999.
  • Günzler WA, Vergin H, Muller I, Flohé L. Glutathione peroxidase VI: the reaction of glutathione peroxidase with various hydroperoxides. Hoppe-Seyler's Z Physiol Chem 1972;
  • Giinzler WA, Steffens GJ, Grossmann A et al. The amino-acid sequence of bovine glutathione peroxidase. Hoppe-Seyler's Z Physiol Chem 1984; 365: 195–212.
  • Chambers I, Frampton J, Goldfarb P. Affara N, McBain W, Harrison PR. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA. EMBO J 1986; 5: 1221–1227.
  • Bock A. Biosynthesis of selenoproteins - an overview. Biofactors 2000; 11: 77–78.
  • Fagegaltier D, Carbon P, Krol A. Distinctive features in the SelB family of elongation factors for selenoprotein synthesis. A glimpse of an evolutionary complexified translation apparatus. Biofactors 2001; 14: 5–10.
  • Tanbichler M, Bock A. Functional analysis of prokaryotic SELB proteins. Biofactors 2001; 14: 53–59.
  • Rother M, Resch A, Wilting R, Bock A. Selenoprotein synthesis in archaea. Biofactors 2001; 14: 75–83.
  • Lei XG. Glutathione peroxidase-1 gene knockout on body antioxidant defence in mice. Biofactors 2001; 14: 93–99.
  • Flohé L, Andreesen JR, Brigelius-Flohé R. Maiorino M. Ursini F. Selenium, the element of the moon, in life on earth. IUBMB Life 2000; 49: 411–420.
  • Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxide. Biochim Biophys Acta 1982; 710: 197–211.
  • Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 1985; 839: 62–70.
  • Brigelius-Flohé R, Aumann K-D, Blocker H et al. Phospholipid hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. J Biol Chem 1994; 269: 7342–7348.
  • Takahashi K, Aavissar N, Whitin J, Cohen H. Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch Biochem Biophys 1987; 256: 677–686.
  • Takahashi K, Akasaka M, Yamamoto Y, Kobayashi C, Mizoguchi J, Koyama J. Primary structure of human plasma glutathione peroxidase deduced from cDNA sequences. J Biochem 1990; 108: 145–148.
  • Chu F-F, Doroshov JH, Esworthy RS. Expression, characterization and tissue distribution of a new cellular selenium-dependent glutathione peroxidase GSH-Px-Gl. J Biol Chem 1993; 268: 2571–2576.
  • Ghyselinck NB, Dufaure J-P. A mouse cDNA sequence for epidydymal androgen-regulated proteins related to glutathione peroxidase. Nucleic Acids Res 1990; 18: 7144–7148.
  • Maiorino M, Roche C, Kiess M et al. A selenium-containing phospholipid hydroperoxide glutathione peroxidase in Schisostoma mansoni. Eur J Biochem 1996; 238: 838–844.
  • Alfonso CL, Tulman ER, Lu Z, Zsak L, Kutish GF, Rock DL. The genome of fowlpox virus. J Virol 2000; 74: 3815–3831.
  • Senkevich TG, Bugert JJ, Sisler JR, Koonin EV, Darai G, Moss B. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science 1996; 273: 813–816.
  • Fu LH, Wang XF, Eyal Y et al. A selenoprotein in the plant kingdom. J Biol Chem 2002; 277: 25983–25991.
  • Epp O, Landenstein R, Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 1983; 133: 59–61.
  • Maiorino M, Aumann KD, Brigelius-Flohé R et al. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hoppe-Seyler 1995; 376: 651–660.
  • Sies H, Sharov VS, Klotz L-O, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. J Biol Chem 1997; 272: 27812–27817.
  • Little C, O'Brien PJ. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem Biophys Res Commun 1968; 31: 145–150.
  • Thomas JP, Maiorino M, Ursini F, Girotti AW. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. J Biol Chem 1990; 265: 454–461.
  • Ursini F, Maiorino M, Brigelius-Flohé R et al. The diversity of glutathione peroxidases. Methods Enzymol 1995; 252: 38–53.
  • Takebe G, Yarimizu J, Saito Y et al. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem 2002; 267: 41254–41258.
  • Aumann KD, Bedorf N, Brigelius-Flohé R, Schomburg D, FlohéL. Glutathione peroxidase revisited. Simulation of the catalytic cycle by computer assisted molecular modelling. Biomed Environ Sci 1997; 10: 136–155.
  • Ren B, Huang W, Akeson B, Ladenstein R. The crystal structure of seleno-glutathioneperoxidase from human plasma at 2.9 A resolution. J Mol Biol 1997; 268: 869–885.
  • Gamain B, Langsley G, Fourmaux MN et al. Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 1996; 78: 237–248.
  • Sztajer H, Gamain B, Aumann KD et al. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 2001; 266: 7397–7403.
  • Flohé L, Giinzler W, Jung G, Schaich E, Schneider E Glutathione peroxidase II. Hoppe-Seyler's Z Physiol Chem 1971; 352: 159–169.
  • Flohé L. A comparison of the selenium-dependent glutathione peroxidase. 5th International Symposium on Selenium in Biology and Medicine. Nashville, Tennessee, July 20-23 1992; Abstract.
  • Bjoemstedt M, Xue J, Huang W, Akesson B, Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 1994; 269: 29382–29384.
  • Mauri P, Benazzi L, Flohé L et al. Versatility of selenium catalysis in PHGPx unraveled by LC/ESI-MS/MS. Biol Chem 2003; 384: 575–588.
  • Godeas C, Tramer F, Micali F, Soranzo M, Sandri G, Panfili E. Distribution and possible novel role of phospholipid hydroperoxide glutathione peroxidase in rat epidydymal spermatozoa. Biol Reprod 1997; 57: 1502–1508.
  • Pfeifer H, Conrad M, Roethlein D et al. Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol cross-linking during sperm maturation. FASEB J 2001; 15: 1236–1238.
  • Miranda-Vizuete A, Ljung J, Damdimopoulos AD et al. Characterization of Sprtx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem 2001; 276: 31567–31574.
  • Herbette S, Lenne C, Leblanc N, Julien J-L, Drevet JR, Roeckel-Drevet P. Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 2002; 269: 2414–2420.
  • Missirlis F, Rahlfs S, Nikolaos D et al. A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. Biol Chem 2003; 384: 463–472.
  • Baker LM, Poole LB. Catalytic mechanism of thiol peroxidase from Escherichia coli. J Biol Chem 2003; 278: 9203–9219.
  • Wilkinson SR, Kelly JM. The role of glutathione peroxidases in Trypanosomatids. Biol Chem 2003; 384: 517–525
  • Krauth-Siegel LR, Meiering SK, Schmidt H. The parasite-specific trypanothione metabolism of Trypanosoma and Leishmania. Biol Chem 2003; 384: 539–549.
  • Paul KG, Peroxidases. In: Boyer PD, Lardy H, Myrback K. (eds) The Enzymes, 2nd edn. New York: Academic Press, 1963; 227-274.
  • Jacobson FS, Morgan RW, Christman MF, Ames BN. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem 1989; 264: 1488–1496.
  • Storz G, Jacobson FS, Tartaglia LA, Morgan RW, Silveira LA, Ames BN. An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J Bacteriol 1989; 171: 2049–2055.
  • Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER. The isolation and purification of a specific ‘protector’ protein which inhibits enzyme inactivation by a thiol/Fe(III)/02 mixed-function oxidation system. J Biol Chem 1988; 263: 4704–4711.
  • Netto LES, Chae HZ, Kang SW, Rhee SG, Stadtman ER. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem 1996; 271: 15315–15321.
  • Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 1994; 269: 27670–27678.
  • Rhee SG, Kang SW, Netto LE, Seo MS, Stadtman ER. A family of novel peroxidases, peroxiredoxins. Biofactors 1999; 10: 207–209.
  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 1994; 91: 7017–7021.
  • Nogoceke E, Gommel DU, Kiess M, Kalisz HM, Flohé L. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem 1997; 378: 827–836.
  • Budde H, Flohé L, Hecht HJ et al. Subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei. Biol Chem 2003; 384: 619–633.
  • Castro H, Budde H, Flohé L et al. Specificity and kinetics of a mitochondrial peroxiredoxin of Leishmania infantum. Free Radic Biol Med 2002; 33: 1563–1574.
  • Harris JR, Schröder E, Isupov MN et al. Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography. Biochim Biophys Acta 2001; 1547: 221–234.
  • Wood ZA, Poole LB, Hantgan RR, Karplus PA. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 2002; 41: 5493–5504.
  • Fisher AB, Dodia C, Manevich Y, Chen JW, Feinstein SI. Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J Biol Chem 1999; 274: 21326–21334.
  • Andreesen JR, Wagner M, Sonntag D et al. Various functions of selenols and thiols in anaerobic gram-positive, amino acids-utilizing bacteria. Biofactors 1999; 10: 263–270.
  • Flohé L, Budde H, Bruns K et al. Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch Biochem Biophys 2002; 397: 324–335.
  • Poole LB, Ellis HR. Identification of cysteine sulfenic acid in AhpC of alkyl hydroperoxide reductase. Methods Enzymol 2002; 348: 122–136.
  • Flohé L, Steinert P, Hecht HJ, Hofmann B. Tryparedoxin and tryparedoxin peroxidase. Methods Enzymol 2002; 347: 244–258.
  • Bryk R, Griffin P, Nathan C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 2000; 407: 211–215.
  • Schmidt A, Clayton CE, Krauth-Siegel RL. Silencing of the thioredoxin gene in Trypanosoma brucei. Mol Biochem Parasitol 2002; 125: 207–210.
  • Steinert P, Plank-Schumacher K, Montemartini M, Hecht HJ, Flohé L. Permutation of the active site motif of tryparedoxin 2. Biol Chem 2000; 381: 211–219.
  • Becker K, RahIfs S, Nickel C, Schirmer RH. Glutathione — functions and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem 2003; 384: 551–566.
  • Guerrero SA, Lopez JA, Steinert Pet al. His-tagged tryparedoxin peroxidase of Trypanosoma cruzi as a tool for drug screening. Appl Microbiol Biotechnol 2000; 53: 410–414.
  • Baker LM, Raudonikiene A, Hoffman PS, Poole LB. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J Bacteriol 2001; 183: 1961–1973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.