Publication Cover
Redox Report
Communications in Free Radical Research
Volume 17, 2012 - Issue 3
469
Views
1
CrossRef citations to date
0
Altmetric
Research articles

The role of Fpg protein in UVC-induced DNA lesions

, , &
Pages 95-100 | Published online: 19 Jul 2013

References

  • Davies KJA. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 1994;61:1–31.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. New York, USA: Oxford University Press; 2007.
  • Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994;65:27–33.
  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. DNA repair and mutagenesis. 2nd ed. Washington, DC: ASM Press; 2006.
  • Farr SB, Kogoma T. Oxidative stress response in Escherichia coli and Salmonella typhimurium. Microbiol Rev 1991;55:561–85.
  • Serafini DM, Schellhorn HE. Endonuclease III and endonuclease IV protect Escherichia coli from the lethal and mutagenic effects of near-UV radiation. Can J Microbiol 1999;45:632–7.
  • Mandronich S, McKenzie RL, Björn LO, Caldwell MM. Changes in biologically active ultraviolet radiation reaching the Earth's surface. J Photochem Photobiol 1998;46:5–19.
  • Eisenstark A. Mutagenic and lethal effects of near-ultraviolet radiation (290–400 nm) on bacteria and phage. Environm Mol Mut 1987;10:317–37.
  • Cadet J, Teoule R. Comparative study of oxidation of nucleic acid components by hydroxyl radicals, singlet oxygen and superoxide anion radicals. Photochem Photobiol 1978;28:661–7.
  • Ames BA, Gold LS. Endogenous mutagens and the cause of aging and cancer. Mutat Res 1991;250:3–16.
  • Piette J. Biological consequences associated with DNA oxidation mediated by singlet oxygen. Photochem Photobiol 1991;11:241–60.
  • Briviba K, Klotz LO, Sies H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 1997;378:1259–65.
  • Tchou J, Grollman AP. Repair of DNA containing the oxidatively-damaged base, 8-oxoguanine. Mutat Res 1993;299:277–87.
  • Agnez-Lima LF, Oliveira RLC, Di Mascio P, Menck CFM. Involvement of Escherichia coli exonuclease III and endonuclease IV in the repair of singlet oxygen-induced DNA damage. Carcinogenesis 1996;17:1183–5.
  • Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science 1988;240:1302–9.
  • Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992;355:273–5.
  • Rosen JE, Prahalad AK, Williams GM. 8-oxodeoxyguanosine formation in the DNA of cultured cells after exposure to H2O2 alone or with UVB or UVA irradiation. Photochem Photobiol 1996;64:117–22.
  • Hart RW, Setlow RB, Woodhead AD. Evidence that pyrimidine dimers in DNA can give rise to tumors. Proc Natl Acad Sci USA 1977;74:5574–8.
  • Beyer WF, Imlay J, Fridovich I. Superoxide dismutases. Prog Nucleic Acid Res Mol Biol 1991;40:221–53.
  • Czeczot H, Tudek B, Lambert B, Laval J, Boiteux S. Escherichia coli Fpg protein and UvrABC endonuclease repair DNA damage induced by methylene blue plus visible light in vivo and in vitro. J Bacteriol 1991;173:3419–24.
  • Michaels ML, Miller JH. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 1992;174:6321–5.
  • Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie 1999;81:59–67.
  • Fowler RG, White SJ, Koyama C, Moore SC, Dunn RL, Schaaper RM. Interactions among the Escherichia coli mutT, mutM, and mutY damage prevention pathways. DNA Repair (Amst) 2003;2:159–73.
  • Zhang X, Rosenstein BS, Wang Y, Lebwohl M, Wei H. Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage. Free Rad Biol Med 1997;23:980–5.
  • Wei H, Cai Q, Rahn R, Zhang X. Singlet oxygen involvement in ultraviolet (254 nm) radiation induced formation of 8-hydroxy-deoxyguanosine in DNA. Free Rad Biol Med 1997;23:148–54.
  • Demple B, Linn S. 5,6-Satured thymine lesions in DNA: production by ultraviolet light or hydrogen peroxide. Nucleic Acids Res 1982;10:3781–9.
  • Devary Y, Gottlieb RA, Smeal T. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinase. Cell 1992;71:1081–91.
  • Silva-Júnior ACT, Asad LMBO, Felzenszwalb I, Asad NR. Mutagenicity induced by UVC in Escherichia coli cells: reactive oxygen species involvement. Redox Report 2011;16(5):187–92.
  • Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Plainview, NY: Cold Spring Harbor Laboratory Press; 2001.
  • Miller JH. A short course in bacterial genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1992.
  • Cupples CG, Miller JH. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci USA 1989;86:5345–9.
  • Josephy PD. The Escherichia coli lacZ reversion mutagenicity assay. Mut Res 2000;455:71–80.
  • Vogel HJ, Bonner DM. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 1956;218(1):97–106.
  • Gomes AA, Silva-Júnior ACT, Oliveira EB, Asad LMBO, Reis NCSC, Felzenszwalb I, et al. Reactive oxygen species mediate lethality induced by far-UV in Escherichia coli cells. Redox Rep 2005;10:91–5.
  • Ames BN. Dietary carcinogens and anticarcinogens. Science 1983;22:1256–64.
  • Breimer LH. Molecular mechanisms of oxygen radicalcarcinogenesis and mutagenesis: the role of DNA base damage. Mol Carcinog 1990;3:188–97.
  • Aruoma OI, Halliwell B, Dizdaroglu M. Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase. J Biol Chem 1989;264(22):13024–8.
  • Blakely WF, Fuciarelli AF, Wegher BJ, Dizdaroglu M. Hydrogen peroxide-induced base damage in deoxyribonucleic acid. Radiat Res 1990;121:338–43.
  • Touati D, Jacques M, Tardat B, Bouchard L, Despied S. Lethal oxidative damage and mutagenesis are generated by iron in Δfur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 1995;177(9):2305–14.
  • Hoerter JD, Arnold AA, Ward CS, Sauer MG, Johnson S, Fleming TJ, et al. Reduced hydroperoxidase (HPI and HPII) activity in the Δfur mutant contributes to increased sensitivity to UVA radiation in Escherichia coli. J Photochem Photobiol B: Biol 2005;79:151–7.
  • Caldeira de Araújo A, Favre A. Near ultraviolet DNA damage induces the SOS response in Escherichia coli. EMBO J 1986;5:175–9.
  • Zang H, Irimia A, Choi J, Angel KC, Loukachevitch LV, Egli M, et al. Efficient and high fidelity incorporation of dCTP opposite 7,8-dihydro-8-oxodeoxyguanosine by sulfolobus solfataricus DNA polymerase Dpo4. J Biol Chem 2006;281(4):2358–72.
  • Cadet J, Berger M, Douki T, Morin B, Raoul S, Ravanat JL, et al. Effects of UV and visible radiation on DNA – final base damage. Biol Chem 1997;378:1275–86.
  • Menck CFM, Di Mascio P, Agnez LF, Ribeiro DT, Costa de Oliveira R. Genetic deleterious effects of singlet oxygen. Quimica Nova 1993;16:328–36.
  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem 1992;267:166–72.
  • Cupples CG, Cabrera M, Cruz C, Miller JH. A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations. Genetics 1990;125:275–80.
  • Borden A, O'Grady PI, Vandewiele D, Fernandez de Henestrosa AR, Lawrence CW, Woodgate R. Escherichia coli DNA Polymerase III can replicate efficiently past a T-T cis-syn cyclobutane dimer if DNA Polymerase V and the 3′ to 5′ exonuclease proofreading function encoded by dnaQ are inactivated. J Bacteriol 2002;184:2674–81.
  • Boiteux S, Gellon L, Guibourt N. Repair of 8-oxoguanine in Saccharomyces cerevisiae: interplay of DNA repair and replication mechanisms. Free Rad Biol Med 2002;32:1244–53.
  • Batty DP, Wood RD. Damage recognition in nucleotide excision repair of DNA. Gene 2000;241:193–204.
  • Agnez-Lima LF, Napolitano RL, Fuchs RPP, Di Mascio P, Muotri AR, Menck CFM. DNA repair and sequence context affect 1O2-induced mutagenesis in bacteria. Nucleic Acids Res 2001;29:2899–903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.