Publication Cover
Redox Report
Communications in Free Radical Research
Volume 20, 2015 - Issue 2
1,800
Views
28
CrossRef citations to date
0
Altmetric
Research Articles

Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation

, , &

References

  • Fenton H. LXXIII – oxidation of tartaric acid in presence of iron. J Chem Soc Trans 1894;65:899–910.
  • Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A Math Phys Sci 1934;147:332–51.
  • Gallard H, de Laat J, Legube B. Influence du pH sur la vitesse d'oxydation de composés organiques par FeII/H2O2. Mécanismes réactionnels et modélisation. New J Chem 1998;22(3):263–8.
  • Bray W, Gorin M. Ferryl ion, a compound of tetravalent iron. J Am Chem Soc 1932;54(5):2124–5.
  • Lin Z, Chen H, Zhou Y, Ogawa N, Lin J. Self-catalytic degradation of ortho-chlorophenol with Fenton's reagent studied by chemiluminescence. J Environ Sci 2012;24(3):550–7.
  • Walling C, Weil T. The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acid solution. Int J Chem Kinet 1974;6(4):507–16.
  • De Laat J, Gallard H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling. Environ Sci Technol 1999;33(16):2726–32.
  • Bossmann S, Oliveros E, Kantor M, Niebler S, Bonfill A, Shahin N, et al. New insights into the mechanisms of the thermal Fenton reactions occurring using different iron(II)-complexes. Water Sci Technol 2004;49(4):75–80.
  • Šnyrychová I, Pospíšil P, Nauš J. The effect of metal chelators on the production of hydroxyl radicals in thylakoids. Photosynth Res 2006;88(3):323–9.
  • Georgi A, Schierz A, Trommler U, Horwitz C, Collins T, Kopinke F. Humic acid modified Fenton reagent for enhancement of the working pH range. Appl Catal B 2007;72(1):26–36.
  • Kang M, Lee S, Koh H. Prooxidant properties of ascorbic acid in the nigrostriatal dopaminergic system of C57BL/6 mice. Toxicology 2012;294(1):1–8.
  • Kerem Z, Jensen K, Hammel K. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 1999;446(1):49–54.
  • Jensen K, Houtman C, Ryan Z, Hammel K. Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 2001;67(6):2705–11.
  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, et al. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 1997;53(2–3):133–62.
  • Pignatello J, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 2006;36(1):1–84.
  • Goodell B, Jellison J, Liu J, Krishnamurthy S. Degradation and protection of organic compounds mediated by low molecular weight chelators. US Patent 6,046,375; 2000.
  • Aguiar A, Ferraz A, Contreras D, Rodriguez J. Mechanism and applications of the Fenton reaction assisted by iron-reducing phenolic compounds. Quim Nova 2007;30(3):623–8.
  • Pracht J, Boenigk J, Isenbeck-Schröter M, Keppler F, Schöler H. Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere 2001;44(4):613–9.
  • Contreras D, Freer J, Rodriguez J. Veratryl alcohol degradation by a catechol-driven Fenton reaction as lignin oxidation by brown-rot fungi model. Int Biodeterior Biodegradation 2006;57(1):63–8.
  • Contreras D, Rodríguez J, Freer J, Schwederski B, Kaim W. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation. J Biol Inorg Chem 2007;12(7):1055–61.
  • Contreras D, Rodríguez J, Salgado P, Soto-Salazar C, Qian Y, Goodell B. Chemiluminescence of the Fenton reaction and a dihydroxybenzene-driven Fenton reaction. Inorg Chim Acta 2011;374:643–6.
  • Berg D, Gerlach M, Youdim M, Double K, Zecca L, Riederer P, et al. Brain iron pathways and their relevance to Parkinson's disease. J Neurochem 2001;79(2):225–36.
  • Paris I, Martinez-Alvarado P, Cardenas S, Perez-Pastene C, Graumann R, Fuentes P, et al. Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chem Res Toxicol 2005;18(3):415–9.
  • Drechsel D, Patel M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease. Free Radic Biol Med 2008;44(11):1873–86.
  • Hašková P, Kovaříková P, Koubková L, Vávrová A, Macková E, Šimůnek T. Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radic Biol Med 2011;50(4):537–49.
  • Dhalla N, Adameova A, Kaur M. Role of catecholamine oxidation in sudden cardiac death. Fundam Clin Pharmacol 2009;24(5):539–46.
  • Black P, Garbutt L. Stress, inflammation and cardiovascular disease. J Psychosom Res 2002;52(1):1–23.
  • Charkoudian L, Franz K. Fe(III)-coordination properties of neuromelanin component: 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid. Inorg Chem 2006;45(9):3657–64.
  • Linert W, Jameson G. Redox reactions of neurotransmitters possibly involved in the progression of Parkinson's disease. J Inorg Biochem 2000;79(1):319–26.
  • Khindaria A, Yamazaki I, Aust S. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 1996;35(20):6418–24.
  • Eurachem, Eurolab, Citac, Nordtest, Amc. Measurement uncertainty arising from sampling: a guide to methods and approaches Eurachem. In: Ramsey MH, Ellison SLR, (eds); 2007.
  • Hansch C, Leo A, Taft R. A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 1991;91(2):165–95.
  • Hamilton G, Hanifin J, Friedman J. The hydroxylation of aromatic compounds by hydrogen peroxide in the presence of catalytic amounts of ferric ion and catechol. Product studies, mechanism, and relation to some enzymic reaction 1,2. J Am Chem Soc 1966;88(22):5269–72.
  • Rodriguez J, Contreras D, Oviedo C, Freer J, Baeza J. Degradation of recalcitrant compounds by catechol-driven Fenton reaction. Water Sci Technol 2004;49(4):81–4.
  • Arantes V, Milagres A, Filley T, Goodell B. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 2001;38(4):541–55.
  • Gallard H, De Laat J, Legube B. Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions. Water Res 1999;33(13):2929–36.
  • Graf E, Mahoney J, Bryant R, Eaton J. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem 1984;259(6):3620–4.
  • Rodríguez J, Parra C, Contreras, Freer J, Baeza J. Dihydroxybenzenes: driven Fenton reactions. Water Sci Technol 2001;44(5):251–6.
  • Salgado P, Melin V, Contreras D, Moreno Y, Mansilla H. Fenton reaction driven by iron ligands. J Chil Chem Soc 2013;58(3):1842–7.
  • Bossmann S, Oliveros E, Gob S, Siegwart S, Dahlen E, Payawan L, et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J Phys Chem A 1998;102(28):5542–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.