507
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Residual stresses, microstructure and tensile properties in Ti–6Al–4V friction stir welds

, , , &
Pages 525-533 | Received 27 Mar 2012, Accepted 15 May 2012, Published online: 12 Nov 2013

References

  • Romero J, Attallah MM, Preuss M, Karadge M, Bray SE: ‘Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds’, Acta Mater., 2009, 57, 5582–5592.
  • Thomas WM, Nicholas ED: ‘Friction stir welding for the transportation industries’, Mater. Des., 1997, 18, (4–6), 269–273.
  • John R, Jata KV, Sadananda K: ‘Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys’, Int. J. Fatigue, 2003, 25, (9–11), 939–948.
  • Nandan R, DebRoy T, Bhadeshia H: ‘Recent advances in friction-stir welding – process, weldment structure and properties’, Prog. Mater. Sci., 2008, 53, (6), 980–1023.
  • Threadgill PL, Leonard AJ, Shercliff HR, Withers PJ: ‘Friction stir welding of aluminium alloys’, Int. Mater. Rev., 2009, 54, (2), 49–93.
  • Hattingh DG, Blignault C, van Niekerk TI, James MN: ‘Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool’, J. Mater. Process. Technol., 2008, 203, (1–3), 46–57.
  • Hattingh DG, van Niekerk TI, Blignault C, James MN: ‘Analysis of the FSW force footprint and its relationship with the process parameters to optimise weld performance and tool design’, IIW J. Weld. World, 2004, 48, (1–2), 50–58.
  • Zhou L, Liu CD, Liu P, Liu QW: ‘The stir zone microstructure and its formation mechanism in Ti–6Al–4V friction stir welds’, Scr. Metall. Mater., 2009, 61, 596–599.
  • Zhang Y, Sata YS, Kokawa H, Park SHC, Hirano S: ‘Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds’, Mater. Sci. Eng. A, 2008, A485, 448–455.
  • Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S: ‘Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool’, Mater. Sci. Eng. A, 2008, A488, (1–2), 25–30.
  • Fratini L, Micari F, Buffa G, Ruisi VF: ‘A new fixture for FSW processes of titanium alloys’, CIRP Ann., 59, (1), 271–274.
  • Zhou L, Liu HJ: ‘Effect of 0·3 wt% hydrogen addition on the friction stir welding characteristics of Ti–6Al–4V alloy and mechanism of hydrogen-induced effect’, Int. J. Hydrogen Energy, 2010, 35, (16), 8733–8741.
  • Pilchak A, Tang W, Sahiner H, Reynolds A, Williams J: ‘Microstructure evolution during friction stir welding of mill-annealed Ti–6Al–4V’, Metall. Mater. Trans. A, 2011, 42A, (3), 745–762.
  • Querin JA, Rubisof HA, Schneider JA: ‘Effect of weld tool geometry on friction stir welded Ti–6Al–4V’, Proc. 8th Int. Conf. on ‘Trends in welding research 2008’, Pine Mountain, GA, USA, June 2008, ASM International, 108–112.
  • Zhou L, Liu HJ, Liu QW: ‘Effect of process parameters on stir zone microstructure in Ti–6Al–4V friction stir welds’, J. Mater. Sci., 2010, 45, 39–45.
  • Pilchak AL, Juhas MC, Williams JC: ‘Microstructural changes due to friction stir processing of investment-cast Ti–6Al–4V’, Metall. Mater. Trans. A, 2007, 38A, 401–408.
  • Pasta S, Reynolds AP: ‘Residual stress effects on fatigue crack growth in a Ti–6Al–4V friction stir weld’, Fatigue Fract. Eng. Mater. Struct., 2008, 31, (7), 569–580.
  • Pasta S, Reynolds AP: ‘Evaluation of residual stresses during fatigue test in an FSW joint’, Strain, 2008, 44, (2), 147–152.
  • Liu HJ, Zhou L, Liu QW: ‘Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy’, Mater Des., 2009, 31, (3), 1650–1655.
  • Lutjering G: ‘Influence of processing on microstructure and mechanical properties of (alpha+beta) titanium alloys’, Mater. Sci. Eng A, 1998, A243, (1–2), 32–45.
  • Stapleton AM, Raghunathan SL, Bantounas I, Stone HJ, Lindley TC, Dye D: ‘Evolution of lattice strain in Ti–6Al–4V during tensile loading at room temperature’, Acta Mater., 2008, 56, (20), 6186–6196.
  • Preuss M, Withers PJ, Maire E, Buffiere JY: ‘SiC single fibre full-fragmentation during straining in a Ti–6Al–4V matrix studied by synchrotron X-rays’, Acta Mater., 2002, 50, (12), 3175–3190.
  • Kumar A, Rabe U, Arnold W: ‘Mapping of elastic stiffness in an α+β titanium alloy using atomic force acoustic microscopy’, Jpn J. Appl. Phys., 2008, 47, 6077.
  • Mante F, Baran G, Lucas B: ‘Nanoindentation studies of titanium single crystals’, Biomaterials, 1999, 20, 1051.
  • Sen I, Ramamurty U: ‘Elastic modulus of Ti–6Al–4V–xB alloys with B up to 0·55 wt.%’, Scr. Metall. Mater., 2010, 62, 37.
  • Fan Z: ‘On the Young’s moduli of Ti–6Al–4V alloys’, Scr. Metall. Mater., 1993, 29, 1427.
  • Larson AC, Von Dreele RB: ‘General Structure Analysis System (GSAS)’, Report no. LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM, USA, 1994.
  • Jones RE, Loftus ZS: ‘Friction stir welding of 5mm Ti–6Al–4V’, Proc. 6th Int. Friction Stir Symp., Saint-Sauveur, Que., Canada, October 2006, TWI, Paper 58.
  • Peel M, Steuwer A, Preuss M, Withers PJ: ‘Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds’, Acta Mater., 2003, 51, (16), 4791–4801.
  • Steuwer A, Santisteban JR, Turski M, Withers PJ, Buslaps T: ‘High-resolution strain mapping in bulk samples using full-profile analysis of energy-dispersive synchrotron X-ray diffraction data’, J. Appl. Crystallogr., 2004, 37, 883–889.
  • Withers PJ, Preuss M, Steuwer A, Pang JWL: ‘Methods for obtaining the strain-free lattice parameter when using diffraction to determine residual stress’, J. Appl. Crystallogr., 2007, 40, (5), 891–904.
  • Withers PJ, Clarke AP: ‘A neutron diffraction study of load partitioning in continuous Ti/Sic composites’, Acta Mater., 1998, 46, (18), 6585–6598.
  • Steuwer A, Peel M, Withers PJ: ‘Dissimilar friction stir welds in AA5083–AA6082. The effect of process parameters on residual stress’, Mater. Sci. Eng. A, 2006, A441, (1–2), 187–196.
  • Lombard H, Hattingh DG, Steuwer A, James MN: ‘Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds’, Mater. Sci. Eng. A, 2009, A501, (1–2), 119.
  • Peel MJ, Steuwer A, Withers PJ: ‘Dissimilar friction stir welds in AA5083–AA6082. Part II: Process parameter effects on microstructure’, Metall. Mater. Trans. A, 2006, 37A, (7), 2195–2206.
  • Peel MJ, Steuwer A, Withers PJ, Dickerson T, Shi Q, Shercliff H: ‘Dissimilar friction stir welds in AA5083–AA6082. Part I: Process parameter effects on thermal history and weld properties’, Metall. Mater. Trans. A, 2006, 37A, (7), 2183–2193.
  • Steuwer A, Barnes SJ, Altenkirch J, Johnson R, Withers PJ: ‘Friction stir welding of HSLA-65 steel. Part II: The influence of weld speed and tool material on the residual stress distribution and tool wear’, Metall. Mater. Trans. A, to be published.
  • Lombard H, Hattingh DG, Steuwer A, James MN: ‘Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds’, Mater. Sci. Eng. A, 2009, A501, (1–2), 119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.