6,464
Views
350
CrossRef citations to date
0
Altmetric
Review

Critical review of automotive steels spot welding: process, structure and properties

&
Pages 361-403 | Received 25 Jan 2013, Accepted 16 Mar 2013, Published online: 18 Nov 2013

References

  • Xia M, Tian Z, Zhao L, Zhou YN: ‘Fusion zone microstructure evolution of Al-alloyed TRIP steel in diode laser welding’, Mater. Trans., 2008, 49, 746–753.
  • Donders S, Brughmans M, Hermans L, Tzannetakis N: ‘The effect of spot weld failure on dynamic vehicle performance’, Sound Vibrat., 2005, 39, 16–25.
  • De A: ‘Spot welding’, Sci. Technol. Weld. Join., 2008, 13, 213–214.
  • Williams NT, Parker JD: ‘Review of resistance spot welding of steel sheets: Part 1 – Modelling and control of weld nugget formation’, Int. Mater. Rev., 2004, 49, 45–75.
  • Zhang H, Senkara J: ‘Resistance welding: fundamentals and applications’; 2005, London, Taylor & Francis CRC Press.
  • Peterson W, Borchelt J: ‘Maximizing cross tension impact properties of spot welds in 1·5 mm low carbon, dual-phase, and martensitic steels’, SAE technical paper 2000-01-2680, SAE International, Warrendale, PA, USA, 2000.
  • Pouranvari M, Abedi A, Marashi P, Goodarzi M: ‘Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds’, Sci. Technol. Weld. Join., 2008, 13, 39–43.
  • Zuniga SM: ‘Predicting overload pull-out failures in resistance spot welded’, PhD thesis, Stanford University, Stanford, CA, USA, 1994.
  • Pouranvari M, Marashi SPH, Safanama DS: ‘Failure mode transition in AHSS resistance spot welds. Part II: Experimental investigation and model validation’, Mater. Sci. Eng. A, 2011, A528, 8344–8352.
  • Podrzaj P, Polajnar I, Diaci J, Kariz Z: ‘Overview of resistance spot welding control’, Sci. Technol. Weld. Join., 2008, 13, 215–224.
  • Messler RW, Jou M: ‘Review of control systems for resistance spot welding: past and current practices and emerging trends’, Sci. Technol. Weld. Join., 1996, 1, 1–9.
  • Zhao X, Zhang YS, Chen GL: ‘Ultrasonic fast identification of automotive body spot weld defect based on echo characteristics qualitative analysis’, Sci. Technol. Weld. Join., 2006, 11, 731–736.
  • Podrzaj P, Polajnar I, Diaci J, Kariz Z: ‘Estimating the strength of resistance spot welds based on sonic emission’, Sci. Technol. Weld. Join., 2005, 10, 399–405.
  • Roberts D, Mason J, Lewis C: ‘Ultrasonic spot weld testing with automatic classification’, Sci. Technol. Weld. Join., 2002, 7, 47–50.
  • Zhang YS, Zhang XY, Lai XM, Chen GL: ‘Online quality inspection of resistance spot welded joint based on electrode indentation using servo gun’, Sci. Technol. Weld. Join., 2007, 12, 449–454.
  • David SA, Debroy T: ‘Current issues and problems in welding science’, Science, 1992, 257, 497–502.
  • Pouranvari M, Asgari HR, Mosavizadch SM, Marashi PH, Goodarzi M: ‘Effect of weld nugget size on overload failure mode of resistance spot welds’, Sci. Technol. Weld. Join., 2007, 12, 217–225.
  • Lin PC, Lin SH, Pan J: ‘Modeling of failure near spot welds in lap-shear specimens based on a plane stress rigid inclusion analysis’, Eng. Fract. Mech., 2006, 73, 2229–2249.
  • Sun X, Stephens EV, Khaleel MA: ‘Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions’, Eng. Fail. Anal., 2008, 15, 356–367.
  • Sun X, Stephens EV, Khaleel MA: ‘Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high-strength steel spot welds’, Weld. J. (Miami, Fla), 2007, 86, 18-s–25-s.
  • Nieto J, Guerrero-Mata MP, Colas R, Mani A: ‘Experimental investigation on resistance spot welding of galvannealed HSLA steel’, Sci. Technol. Weld. Join., 2006, 11, 717–722.
  • Sun X, Stephens EV, Davies RW, Khaleel MA, Spinella DJ: ‘Effects of fusion zone size on failure modes and static strength of aluminum resistance spot welds’, Weld. J. (Miami, Fla), 2004, 83, 308-S–318-S.
  • Pouranvari M, Marashi SPH: ‘Critical sheet thickness for weld nugget growth during resistance spot welding of three-steel sheets’, Sci. Technol. Weld. Join., 2011, 16, 162–165.
  • Sam S, Shome M: ‘Static and fatigue performance of weld bonded dual phase steel sheets’, Sci. Technol. Weld. Join., 2010, 15, 242–247.
  • Khan MI, Kuntz ML, Su P, Gerlich A, North T, Zhou Y: ‘Resistance and friction stir spot welding of DP600: a comparative study’, Sci. Technol. Weld. Join., 2007, 12, 175–182.
  • Pouranvari M, Ranjbarnoodeh E: ‘Dependence of fracture mode on welding variables in resistance spot welding of DP980 advanced high strength steel’, Mater. Technol., 2012, 46, 665–671.
  • De A, Gupta P, Dom L: ‘An experimental study of resistance spot welding in 1 mm thick sheet of low carbon steel’, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 1996, 210, 341–347.
  • Mukhopadhyay G, Bhattacharya S, Ray KK: ‘Strength assessment of spot-welded sheets of interstitial free steels’, J. Mater. Process. Technol., 2009, 209, 1995–2007.
  • Pedersen KR, Harthøj A, Friis KL, Bay N, Somers MAJ, Zhang W: ‘Microstructure and hardness distribution of resistance welded advanced high strength steels’, Proc. 5th Int. Semin. on ‘Advances in resistance welding’, Toronto, Canada, September 2008, 134–146, SWANTEC Software and Engineering ApS and Huys Industries Ltd.
  • Zuniga SM, Sheppard SD: ‘Determining the constitutive properties of the heat-affected zone in a resistance spot weld’, Modell. Simul. Mater. Sci. Eng., 1995, 3, 391–416.
  • Yang YP, Gould J, Peterson W, Orth F, Zelenak P, Al-Fakir W: ‘Development of spot weld failure parameters for full vehicle crash modelling’, Sci. Technol. Weld. Join., 2013, 18, 222–231.
  • Yang YP, Babu SS, Orth F, Peterson W: ‘Integrated computational model tpo predict mechanical behavior of spot weld’, Sci. Technol. Weld. Join., 2008, 13, 232–239.
  • Radakovic DJ, Tumuluru M: ‘Predicting resistance spot weld failure modes in shear tension tests of advanced high-strength automotive steels’, Weld. J. (Miami, Fla), 2008, 87, 96-s–105-s.
  • Pouranvari M: ‘Failure mode transition in similar and dissimilar resistance spot welds of HSLA and low carbon steels’, Can. Metall. Q., 2012, 51, 67–74.
  • Pouranvari M, Marashi SPH: ‘Key factors influencing mechanical performance of dual phase steel resistance spot welds’, Sci. Technol. Weld. Join., 2012, 15, 149–155.
  • Pouranvari M, Marashi SPH: ‘Failure mode transition in AISI 304 resistance spot welds’, Weld. J. (Miami, Fla), 2012, 91, 303s–309s.
  • Chao YJ: ‘Failure mode of spot welds: interfacial versus pullout’, Sci. Technol. Weld. Join., 2003, 8, 133–137.
  • Pouranvari M, Marashi P, Goodarzi M, Bahmanpour H: ‘Metallurgical factors affecting failure mode of resistance spot welds’, Mater. Sci. Technol., 2008, 2465–2473.
  • Tumuluru M: ‘Resistance spot weld performance and weld failure modes for dual phase and TRIP steels’, in ‘Failure mechanisms of advanced welding processes’, (ed. , Sun X, ed), 43–63; 2010, Cambridge, Woodhead Publishing Limited
  • Gould JE, Khurana SP, Li T: ‘Predictions of microstructures when welding automotive advanced high-strength steels’, Weld. J. (Miami, Fla), 2006, 85, 111-s–116-s.
  • Tamarelli CM: ‘The evolving use of advanced high-strength steels for automotive applications’; 2011, Washington DC, International Iron and Steel Institute.
  • Committee on Automotive Applications: ‘AHSS – application guidelines’; 2006, Washington DC, International Iron and Steel Institute.
  • Cooman BCD: ‘Structure-properties relationship in TRIP steels containing carbide-free bainite’, Curr. Opin. Solid State Mater. Sci., 2004, 8, 285–303.
  • Kuziak R, Kawalla R, Waegler S: ‘Advanced high strength steels for automotive industry’, Arch. Civil Mech. Eng., 2008, 7, 103–117.
  • Zuidema BK: ‘Bridging the design–manufacturing–materials data gap: material properties for optimum design and manufacturing performance in light vehicle steel-intensive body structures’, JOM, 2012, 64, 1093–1047.
  • Matlock DK, Speer JG, Moor ED, Gibbs PJ: ‘Recent developments in advanced high strength sheet steels for automotive applications: an overview’, JESTECH, 2012, 15, 1–12.
  • Matlock DK, Speer JG: ‘Third generation of AHSS: microstructure design concepts’, in ‘Microstructure and texture in steels, (ed. A. Haldar et al.). London, Springer, 185–205; 2009.
  • de Moor E, Gibbs PJ, Speer JG, Matlock DK, Schroth JG: ‘Strategies for third generation advanced high strength steel development’, AIST Trans. Iron Steel Technol., 2010, 7, 133–144.
  • Amirthalingam M, Hermans MJM, Richardson IM: ‘Microstructural development during welding of silicon and aluminium based transformation induced plasticity (TRIP) steels – inclusion and elemental partitioning analysis’, Mater. Metall. Trans. A, 2009, 40A, 901–909.
  • Amirthalingam M, Hermans MJM, Richardson IM: ‘Microstructural evolution during gas tungsten arc, laser and resistance spot welding of Al-containing transformation induced plasticity (TRIP) steel’, Adv. Mater. Res., 2010, 89–91, 23–28.
  • Uijl NJD, Smith S, Goos C, van der Aa E, Moolevliet T, van der Veldt T: ‘Failure modes of resistance spot welded advanced high strength steels’, Proc. 5th Int. Semin. on ‘Advances in resistance welding’, Toronto, Canada, September 2008, 78–104, SWANTEC Software and Engineering ApS and Huys Industries Ltd.
  • Uijl NJD, Smith S: ‘Resistance spot welding of advanced high strength steels for the automotive industry’, Proc. 4th Int. Semin. on ‘Advances in resistance welding’, Wels, Austria, November 2006, 30–60, SWANTEC Software and Engineering ApS and FRONIUS International GmbH.
  • Joaquin A, Elliott ANA, Jiang C: ‘Reducing shrinkage voids in resistance spot welds’, Weld. J. (Miami, Fla), 2007, 86, 24–27.
  • Ma C, Chen DL, Bhole SD, Boudreau G, Lee A, Biro E: ‘Microstructure and fracture characteristics of spot-welded DP600 steel’, Mater. Sci. Eng. A, 2008, A485, 334–346.
  • Marya M, Gayden XQ: ‘Development of requirements for resistance spot welding dual-phase (DP600) steels part 1 – the causes of interfacial fracture’, Weld. J. (Miami, Fla), 2005, 84, 172-s–182-s.
  • Pouranvari M, Marashi SPH: ‘Failure mode transition in AHSS resistance spot welds, Part I: controlling factors’, Mater. Sci. Eng. A, 2001, A528, 8337–8343.
  • Goodarzi M, Marashi SPH, Pouranvari M: ‘Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel’, J. Mater. Process. Technol., 2009, 209, 4379–4384.
  • Shi G, Westgate SA: ‘Resistance spot welding of high strength steels’, International Journal for the Joining of Materials, Vol.16, No.1, March 2004, pp. 9–14.
  • Zhou M, Zhang H, Hu SJ: ‘Relationships between quality and attributes of spot welds’, Weld. J. (Miami, Fla), 2003, 82, 72S–77S.
  • Yang YS, Son KJ, Cho SK, Hong SG, Kim SK, Mo KH: ‘Effect of residual stress on fatigue strength of resistance spot weldment’, Sci. Technol. Weld. Join., 2001, 6, 397–401.
  • Long X, Khanna SK: ‘Fatigue performance of spot welded and weld bonded advanced high strength steel sheets’, Sci. Technol. Weld. Join., 2008, 13, 241–247.
  • Xu J, Zhang YS, Xinmin L, Chen GL: ‘Experimental investigation of fatigue performance of spot welded dual phase sheet steels’, Sci. Technol. Weld. Join., 2008, 13, 726–731.
  • Daneshpour S, Riekehr S, Koçak M, Gerritsen CHJ: ‘Mechanical and fatigue behaviour of laser and resistance spot welds in advanced high strength steels’, Sci. Technol. Weld. Join., 2009, 14, 20–25.
  • Gaul H, Weber G, Rethmeier M: ‘Influence of HAZ cracks on fatigue resistance of resistance spot welded joints made of advanced high strength steels’, Sci. Technol. Weld. Join., 2011, 16, 440–445.
  • Daneshpour S, Kokabi AH, Ekrami AA, Motarjemi AK: ‘Crack initiation and kinking behaviours of spot welded coach peel specimens under cyclic loading’, Sci. Technol. Weld. Join., 2007, 12, 696–702.
  • Wung P, Walsh T, Ourchane A, Stewart W, Jie M: ‘Failure of spot welds under in-plane static loading’, Exp. Mech., 2001, 41, 100–106.
  • Rathbun RW, Matlock DK, Speer JG: ‘Fatigue behavior of spot welded high-strength sheet steels’, Weld. J. (Miami, Fla), 2003, 82, 207s–218s.
  • Pouranvari M, Marashi SPH: ‘Failure of resistance spot welds: tensile shear versus coach peel loading conditions’, Ironmaking Steelmaking, 2012, 39, 104–111.
  • Pouranvari M, Marashi SPH, Mousavizadeh SM: ‘Failure mode transition and mechanical properties of similar and dissimilar resistance spot welds of DP600 and low carbon steels’, Sci. Technol. Weld. Join., 2010, 15, 625–631.
  • Khan MI, Kuntz ML, Zhou Y: ‘Effects of weld microstructure on static and impact performance of resistance spot welded joints in advanced high strength steels’, Sci. Technol. Weld. Join., 2008, 13, 294–304.
  • Pouranvari M: ‘Influence of welding parameters on peak load and energy absorption of dissimilar resistance spot welds of DP600 and AISI 1008 steels’, Can. Metall. Q., 2011, 50, 381–388.
  • Marya M, Gayden XQ: ‘Development of requirements for resistance spot welding dual-phase (DP600) steels part 2: statistical analyses and process maps’, Weld. J. (Miami, Fla), 2005, 84, 197-s–204-s.
  • Saha DC, Han S, Chin KG, Choi I, Park YD: ‘Weldability evaluation and microstructure analysis of resistance-spot-welded high-Mn steel in automotive application’, Steel Res. Int., 2012, 83, 352–357.
  • Lopez-Cortez VH, Reyes-Valdes FA: ‘Understanding resistance spot welding of advanced high-strength steels’, Weld. J. (Miami, Fla), 2008, 87, 36–40.
  • Jung GS, Lee KY, Lee JB, Bhadeshia HKDH, Suh DW: ‘Spot weldability of TRIP assisted steels with high carbon and aluminium contents’, Sci. Technol. Weld. Join., 2012, 17, 92–98.
  • Arora A, Roy GG, Debroy T: ‘Cooling rate in 800 to 500°C range from dimensional analysis’, Sci. Technol. Weld. Join., 2010, 15, 423–427.
  • Grong Φ: ‘Metallurgical modelling of welding’, 2nd edn, 1997, London, The Institute of Materials.
  • Nishi T, Saito T, Yamada A: ‘Evaluation of spot weldability of high strength sheet steels for automobile use’, Nippon Steel technical report No. 20, Nippon Steel, Tokyo, Japan, December 1982.
  • Kim EW, Eagar TW, Kim E, Eagar T: ‘Parametric analysis of resistance spot welding lobe curve’, SAE technical paper 880278, SAE International, Warrendale, PA, USA, 1988.
  • Wei PS, Wu TH: ‘Effects of electrical current on transport processes in resistance spot welding’, Sci. Technol. Weld. Join., 2010, 15, 448–456.
  • Zhang YS, Xu J, Lai XM, Chen GL: ‘Numerical simulation of spot welding for galvanised sheet steels’, Sci. Technol. Weld. Join., 2008, 13, 192–198.
  • Liang C.-P, Lin Z.-Q, Chen G.-L, Li Y.-B: ‘Numerical analysis of single sided spot welding process used in sheet to tube joining’, Sci. Technol. Weld. Join., 2006, 11, 609–617.
  • Khanna S, Long X, Porter WD, Wang H, Liu CK, Radovic M, Lara-Curzio E: ‘Residual stresses in spot welded new generation aluminium alloys Part A – thermophysical and thermomechanical properties of 6111 and 5754 aluminium alloys’, Sci. Technol. Weld. Join., 2005, 10, 82–87.
  • De A: ‘Finite element modelling of resistance spot welding of aluminium with spherical tip electrodes’, Sci. Technol. Weld. Join., 2002, 7, 119–124.
  • Theddeus MP: ‘Finite element analysis of resistance spot welding in aluminium’, Sci. Technol. Weld. Join., 2002, 7, 111–118.
  • Khan J, Xu L, Chao Y.-J: ‘Prediction of nugget development during resistance spot welding using coupled thermal–electrical–mechanical model’, Sci. Technol. Weld. Join., 1999, 4, 201–207.
  • Gould JE: ‘Examination of nugget development during spot welding using both experimental and analytical techniques’, Weld. J., 1987, 66, 1s–10s.
  • Li MV, Dong D, Kimchi M: ‘Modeling and analysis of microstructure development in resistance spot welds of high strength steels’, SAE technical paper 982278, SAE International, Warrendale, PA, USA, 1998.
  • Nayak SS, Baltazar Hernandez VH, Okita Y, Zhou Y: ‘Microstructure-hardness relationship in the fusion zone of TRIP steel welds’, Mater. Sci. Eng. A, 2012, A551, 73–81.
  • Kou S: ‘Welding metallurgy’, 2nd edn; 2003, Hoboken, NJ, John Wiley & Sons, Inc.
  • Pouranvari M, Marashi SPH: ‘On the failure of low carbon steel resistance spot welds in quasi-static tensile–shear loading’, Mater. Des., 2010, 31, 3647–3652.
  • Gould JE: ‘Hold time sensitivity and RSW of high strength steel – weld process effects cracking’, Weld. Des. Fabr., 1999, 8, 48–49.
  • Han Z, Indacochea JE, Chen CH, Bhat S: ‘Weld nugget development and integrity in resistance spot welding of high-strength cold-rolled sheet steels’, Weld. J. (Miami, Fla), 1993, 72, 209-s–216-s.
  • Bhadeshia HKDH: ‘Phase transformations during spot welding of interstitial-free steel’, Proc. Int. Conf. on ‘Interstitial-free steels’, Jamshedpur, India, February 2010, 1–11, Tata Steel Limited and Indian Institute of Metals.
  • Bhadeshia HKDH, David SA, Vitek JM: ‘Solidification sequences in stainless steel dissimilar alloy welds’, Mater. Sci. Technol., 1991, 7, 50–61.
  • Tsukamoto S, Harada H, Bhadeshia HKDH: ‘Metastable phase solidification in electron beam welding of dissimilar stailess steel’, Mater. Sci. Eng. A, 1994, A17, 189–194.
  • De A, Walsh CA, Maiti SK, Bhadeshia HKDH: ‘Prediction of cooling rate and microstructure in laser spot welds’, Sci. Technol. Weld. Join., 2003, 8, 391–399.
  • Babu SS, Reimer BW, Santella ML, Feng Z: ‘Integrated thermal-microstructure model to predict the property gradients in resistance spot steel welds’, Proc. 8th Sheet Metal Welding Conf., Detroit, MI, USA, October 1998, AWS. Paper 5–2.
  • Ion JC, Easterling KE, Ashby MF: ‘A second report on diagrams of microstructure and hardness for heat-affected-zones in welds’, Acta Metall., 1984, 32, 1949–1962.
  • Bhadeshia HKDH, Svensson LE: in ‘Mathematical modeling of weld phenomena’, (ed. , Cerjack H, Easterling K E), 109–180; 1993, London, Institute of Metals.
  • Oak Ridge National Laboratory. http://engm01.ms.ornl.gov.
  • Li MV, Niebuhr DV, Meekisho LL, Atteridge DG: ‘A computational model for the prediction of steel hardenability’, Metall. Mater. Trans. B, 1998, 29B, 661–672.
  • Chatterjee S: ‘Transformations in TRIP-assisted steels: microstructure and properties’, PhD thesis, University of Cambridge, Cambridge, UK, 2006.
  • Yi HL: ‘δ-TRIP steel’, PhD thesis, GIFT, POSTECH, Pohang, Korea, 2010.
  • Yi HL, Lee KY, Bhadeshia HKDH: ‘Stabilisation of ferrite in hot rolled δ-TRIP steel’, Mater. Sci. Technol., 2011, 27, 525–529.
  • Yi HL, Lee KY, Lim JH, Bhadeshia HKDH: ‘Spot weldability of δ-TRIP steel containing 0·4 wt-%C’, Sci. Technol. Weld. Join., 2010, 15, 619–624.
  • Yi HL, Ghosh SK, Liu WJ, Lee KY, Bhadeshia HKDH: ‘Non-equilibrium solidification and ferrite in δ-TRIP steel’, Mater. Sci. Technol., 2010, 26, 817–823.
  • Choi YJ, Suh DW, Bhadeshia HKDH: ‘Retention of δ-ferrite in aluminium-alloyed TRIP-assisted steels’, Proc. R. Soc. Lond. A, 2012, 468A, 2904–2914.
  • Marashi P, Pouranvari M, Sanaee SMH, Abedi A, Abootalebi SH, Goodarzi M: ‘Relationship between failure behaviour and weld fusion zone attributes of austenitic stainless steel resistance spot welds’, Mater. Sci. Technol., 2008, 24, 1506–1512.
  • Blondeau R, Maynier Ph, Dollet J, Vieillard-Baron B: ‘Estimation of hardness, strength and elastic limit of C- and low-alloy steels from their composition and heat treatment’, Memoires Scientifiques Rev. Metallurg. 1975, 72, 759–769.
  • Svensson LE: ‘Prediction of hardness of spot welds in steels’, Weld. World, 2004, 48, 31–35.
  • Uijl NJD, Nishibata H, Smith S, Okada T, van der Veldt T, Uchihara M, Fukui K: ‘Prediction of post weld hardness of advanced high strength steels for automotive application using a dedicated carbon equivalent number’, Weld. World, 2008, 52, 18–29.
  • Khan MI, Kuntz ML, Biro E, Zhou Y: ‘Microstructure and mechanical properties of resistance spot welded advanced high strength steels’, Mater. Trans., 2008, 49, 1629–1637.
  • Pouranvari M, Marashi SPH: ‘Similar and dissimilar RSW of low carbon and austenitic stainless steels: effect of weld microstructure and hardness profile on failure mode’, Mater. Sci. Technol., 2009, 25, 1411–1416.
  • Baltazar Hernandez VH, Kuntz ML, Khan MI, Zhou Y: ‘Influence of microstructure and weld size on the mechanical behaviour of dissimilar AHSS resistance spot welds’, Sci. Technol. Weld. Join., 2008, 13, 769–776.
  • Baltazar Hernandez VH, Panda SK, Kuntz ML, Zhou Y: ‘Nanoindentation and microstructure analysis of resistance spot welded dual phase steel’, Mater. Lett., 2010, 64, 207–210.
  • Baltazar Hernandez VH, Panda SK, Okita Y, Zhou NY: ‘A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation’, J. Mater. Sci., 2010, 45, 1638–1647.
  • Nikoosohbat F, Kheirandish S, Goodarzi M, Pouranvari M, Marashi SPH: ‘Microstructure and failure behaviour of resistance spot welded DP980 dual phase steel’, Mater. Sci. Technol., 2010, 26, 738–744.
  • Xia M, Biro E, Tian Z, Zhou YN: ‘Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels’, ISIJ Int., 2008, 48, 809–814.
  • Baltazar Hernandez VH, Nayak SS, Zhou Y: ‘Tempering of martensite in dual-phase steels and its effects on softening behavior’, Metall. Mater. Trans. A, 2011, 42A, 3115–3129.
  • Nayak SS, Baltazar Hernandez VH, Zhou Y: ‘Effect of chemistry on nonisothermal tempering and softening of dual-phase steels’, Metall. Mater. Trans. A, 2011, 42A, 3242–3248.
  • Dancette S, Massardier-Jourdan V, Fabregue D, Merlin J, Dupuy T, Bouzekri M: ‘HAZ microstructures and local mechanical properties of high strength steels resistance spot welds’, ISIJ Int., 2011, 51, 99–107.
  • Kunishige K, Yamauchi N, Taka T, Nagao N: ‘Softening in weld heat affected zone of dual phase steel sheet for automotive wheel rim’, SAE paper 830632, SAE International, Warrendale, PA, USA, 1983.
  • Kapustka N, Conrardy C, Babu S, Albright C: ‘Effect of GMAW process and material conditions on DP 780 and TRIP 780 welds’, Weld. J., 2008, 87, 135s–148s.
  • Baltazar Hernandez VH: ‘Effects of martensite tempering on HAZ-softening and tensile properties of resistance spot welded dual-phase steels’, PhD thesis, University of Waterloo, Ontario, Canada, 2010.
  • Safanama DS, Marashi SPH, Pouranvari M: ‘Similar and dissimilar resistance spot welding of martensitic advanced high strength steel and low carbon steel: metallurgical characteristics and failure mode transition’, Sci. Technol. Weld. Join., 2012, 17, 288–294.
  • Cheriyan J, Bhatnagar R, Lalam SH: ‘Cost savings for rocker reinforcement through material conversion’, Proc. Great Designs in Steels Seminar, Livonia, MI, USA, March 2006, AISI. Available at htt://www.autosteel.org/Great%20Designs%20in%20Steel.aspx
  • Pal TK, Chattopadhyay K: ‘Resistance spot weldability and high cycle fatigue behaviour of martensitic (M190) steel sheet’, Fatigue Fract. Eng. Mater. Struct., 2011, 34, 46–52.
  • Roncery LM, Weber S, Theisen W: ‘Welding of twinning-induced plasticity steels’, Scr. Mater., 2012, 66, 997–1001.
  • Lippold JC, Kotecki DJ: ‘Welding metallurgy and weldability of stainless steels’; 2005, Hoboken, NJ, John Wiley & Sons.
  • Pouranvari M, Marashi SPH, Mousavizadeh SM: ‘Dissimilar resistance spot welding of DP600 dual phase and AISI 1008 low carbon steels: correlation between weld microstructure and mechanical properties’, Ironmaking Steelmaking, 2011, 38, 471–480.
  • Weber G, Goklu S: ‘Resistance spot welding of uncoated and zinc coated advanced high-strength steels (AHSS) – weldability and process reliability-influence of welding parameters’, Weld. World, 2006, 50, 3–12.
  • Koganti R, Angotti S, Joaquin A, Jiang C: ‘Resistance spot welding (RSW) of advanced high strength steels (AHSS) for automotive body construction’, Proc. ASME Int. Mechanical Engineering Cong. Exposit., Seattle, WA, USA, July 2008, ASME, 669–675.
  • Tong W, Tao H, Jiang X, Zhang N, Marya MP, Hector LG, Gayden XQ: ‘Deformation and fracture of miniature tensile bars with resistance-spot-weld microstructures’, Metall. Mater. Trans. A, 2005, 36A, 2651–2669.
  • Marya M, Wang K, Hector LG, Gayden X: ‘Tensile-shear forces and fracture modes in single and multiple weld specimens in dual-phase steels’, J. Manuf. Sci. Eng. Trans. ASME, 2006, 128, 287–298.
  • Tumuluru MD: ‘Resistance spot welding of coated high-strength dual-phase steels’, Weld. J. (Miami, Fla), 2006, 85, 31–37.
  • Tumuluru M: ‘The effect of coatings on the resistance spot welding behavior of 780 MPa dual-phase steel’, Weld. J. (Miami, Fla), 2007, 86, 161-s–169-s.
  • Rivett RM: ‘Assessment of resistance spot weld in low carbon and high strength steel sheet – Part 1 static properties’, Research report, The Welding Institute, Cambridge, UK, 1982.
  • ‘Specification for automotive weld quality resistance spot welding of steel’, AWS D8:1M, American National Standard, New York, USA, 2007.
  • Pouranvari M, Marashi SPH: ‘Failure behavior of three-steel sheets resistance spot welds: effect of joint design’, J. Mater. Eng. Perform., 2012, 21, 1669–1675.
  • Zuniga S, Sheppard SD: ‘Resistance spot weld failure loads and modes in overload conditions’, ASTM Spec. Tech. Publ., 1997, 1296, 469–489.
  • Dancette S, Massardier V, Merlin J, Fabregue D, Dupuy T: ‘Investigations on the mechanical behavior of advanced high strength steels resistance spot welds in cross tension and tensile shear’, Adv. Mater. Res., 2010, 89–91, 130–135.
  • Dancette S, Fabregue D, Massardier V, Merlin J, Dupuy T, Bouzekri M: ‘Investigation of the tensile shear fracture of advanced high strength steel spot welds’, Eng. Fail. Anal., 2012, 25, 112–122.
  • Chao YJ: ‘Ultimate strength and failure mechanism of resistance spot weld subjected to tensile, shear, or combined tensile/shear loads’, J. Eng. Mater. Technol. Trans. ASME, 2003, 125, 125–132.
  • Brauser S, Pepke LA, Weber G, Rethmeier M: ‘Deformation behaviour of spot-welded high strength steels for automotive applications’, Mater. Sci. Eng. A, 2010, A527, 7099–7108.
  • Radakovic DJ, Tumuluru M: ‘An evaluation of the cross-tension test of resistance spot welds in high-strength dual-phase steels’, Weld. J., 2012, 91, 8s–15s.
  • Dancette S, Fabregue D, Massardier V, Merlin J, Dupuy T, Bouzekri M: ‘Experimental and modeling investigation of the failure resistance of advanced high strength steels spot welds’, Eng. Fract. Mech., 2011, 78, 2259–2272.
  • Dancette S, Fabregue D, Estevez R, Massardier V, Dupuy T, Bouzekri M: ‘A finite element model for the prediction of advanced high strength steel spot welds fracture’, Eng. Fract. Mech., 2012, 87, 48–61.
  • Pouranvari M: ‘Susceptibility to interfacial failure mode in similar and dissimilar resistance spot welds of DP600 dual phase steel and low carbon steel during cross-tension and tensile-shear loading conditions’, Mater. Sci. Eng. A, 2012, A546, 129–138.
  • Westgate S: ‘The resistance spot welding of high and ultra-high strength steels’, Proc. 3rd Int. Semin. on ‘Advances in resistance welding’, Berlin, Germany, November 2004, 8–17, SWANTEC Software and Engineering ApS.
  • Ferrasse S, Verrier P, Meesemaecker F: ‘Resistance spot weldability of high strength steels for use in car industry’, Weld. World, 1998, 41, 177–195.
  • Gould JE, Workman D: ‘Fracture morphologies of resistance spot welds exhibiting hold time sensitivity’, Proc. Sheet Metal Welding Conf. VIII, Detroit, MI, USA, June 1998, AWS Detroit Section. Paper 1–1.
  • Lehman LR, Gould JE: ‘A study of resistance spot welding manufacturability using design-of-experiments’, International Body Engineers Council (IBEC) 94 Proceedings, Advanced Technologies and Processes, 1994, pp. 154–163. Warren, Mich.: IBEC Ltd.
  • Chuko WL, Gould JE: ‘Development of appropriate resistance spot welding practice for transformation-hardened steels’, Weld. J. (Miami, Fla), 2002, 81, 1s–7s.
  • Pouranvari M, Mousavizadeh SM, Marashi SPH, Goodarzi M, Ghorbani M: ‘Influence of fusion zone size and failure mode on mechanical performance of dissimilar resistance spot welds of AISI 1008 low carbon steel and DP600 advanced high strength steel’, Mater. Des., 2011, 32, 1390–1398.
  • Sawhill JM, Watanabe H, Mitchell JW: ‘Spot weldability of Mn-Mo-Cp, V-N, and SAE 1008 steels’, Weld. J. (Miami, Fla), 1977, 56, 217s–224s.
  • Sawhill JM, Baker JC: ‘Spot weldability of high-strength sheet steels’, Weld. J. (Miami, Fla), 1980, 59, 19s–30s.
  • Sawhill JM, Furr ST: ‘Weldability considerations in the development of high-strength sheet steels’, Weld. J. (Miami, Fla), 1984, 63, 203s–212s.
  • Kimichi M: ‘Spot weld properties when welding with expulsion- a comparative study’, Weld. J. (Miami, Fla), 1984, 63, 58s.
  • Ma C, Bhole SD, Chen DL, Lee A, Biro E, Boudreau G: ‘Expulsion monitoring in spot welded advanced high strength automotive steels’, Sci. Technol. Weld. Join., 2006, 11, 480–487.
  • Shen J, Zhang YS, Lai XM: ‘Influence of initial gap on weld expulsion in resistance spot welding of dual phase steel’, Sci. Technol. Weld. Join., 2010, 15, 386–392.
  • Han Z, Indacochea JE: ‘Effects of expulsion in spot welding of cold rolled sheet steels’, J. Mater. Eng. Perform., 1993, 2, 437–444.
  • Senkara J, Zhang H, Hu SJ: ‘Expulsion prediction in resistance spot welding’, Weld. J. (Miami, Fla), 2004, 83, 123-S–132-S.
  • Farson DF, Chen JZ, Ely K, Frech T: ‘Monitoring of expulsion in small scale resistance spot welding’, Sci. Technol. Weld. Join., 2003, 8, 431–436.
  • Zhang H, Hu SJ, Senkara J, Cheng S: ‘A statistical analysis of expulsion limits in resistance spot welding’, J. Manuf. Sci. Eng. Trans. ASME, 2000, 122, 501–510.
  • Zhang H: ‘Expulsion and its influence on weld quality’, Weld. J. (Miami, Fla), 1999, 78, 373s.
  • Deng X, Chen W, Shi G: ‘Three-dimensional finite element analysis of the mechanical behavior of spot welds’, Finite Elements Anal. Des., 2000, 35, 17–39.
  • Ha J, Kim Y, Lim J: ‘Construction of a failure model of spot welds using lap-shear tests’, Proc. SAE 2011 World Congress and Exhibition, Detroit, MI, USA, April 2011, SAE. Paper Number: 2011–01–0471.
  • Pouranvari M, Marashi SPH: ‘Minimum fusion zone size required to ensure pullout failure mode of resistance spot welds during tensile-shear test’, Kovove Mater., 2010, 48, 197–202.
  • Sierlinger DR, Ritsche DS, Szinyur J: ‘Advanced high strength steels for light-weight-body construction in automotive industry – a challenge for resistance spot welding’, Proc. 4th Int. Semin. on ‘Advances in resistance welding’, Wels, Austria, November 2006, 17–29, SWANTEC Software and Engineering ApS and FRONIUS International GmbH.
  • Easterling KE: ‘Introduction to the physical metallurgy of welding’ 2nd edn; 1992, Boston, Butterworth Heinemann.
  • Radaj D: ‘Heat effects of welding – temperature field, residual stress, distortion’; 1992, Berlin, Springer-Verlag.
  • Mimer M, Svensson L.-E, Johansson R: ‘Possibilities to improve fracture behavior in resistance spot welds of EHSS and UHSS by process modifications’, Proc. 3rd Int. Semin. on ‘Advances in resistance welding’, Berlin, Germany, November 2004, 36–46, SWANTEC Software and Engineering ApS.
  • Oikawa H, Murayama G, Sakiyama T, Takahashi Y, Ishikawa T: ‘Resistance spot weldability of high strength steel (HSS) sheets for automobiles’, Nippon Steel Tech. Rep., 2007, 39, 39–45.
  • Hertzberg RW: ‘Deformation and fracture mechanics of engineering materials’, 2nd edn; 1996, New York, John Wiley & Sons.
  • ‘Recommended practices for test methods and evaluation the resistance spot welding behavior of automotive sheet steels’, ANSI/AWS/SAE D8·9-97, 1997.
  • ‘Method of inspection for spot welds’, JIS Z 3140, Japanese Industrial Standards Committee, Tokyo, Japan, 1989.
  • ‘Resistance spot welding’, DVS 2923, German Standard. Düsseldorf , Germany, 1986.
  • van den Bossche DJ: ‘Ultimate tensile strength and failure mode of spot welds in high strength steels’, SAE paper no. 770214, SAE International, Warrendale, PA, USA,1977.
  • Smith RA: ‘Fracture and fatigue-elasto-plasticity, this sheet and micro-mechanisms’, Proc. 3rd Eur. Colloquium on ‘Fracture’, (ed. , Radon J C, ed), 49–56; 1980, Oxford, Pergamon Press.
  • Mortazavi SN, Marashi P, Pouranvari M, Masoumi M: ‘Investigation on joint strength of dissimilar resistance spot welds of aluminum alloy and low carbon steel’, Adv. Mater. Res., 2011, 264–265, 384–389.
  • Marashi P, Pouranvari M, Amirabdollahian S, Abedi A, Goodarzi M: ‘Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels’, Mater. Sci. Eng. A, 2008, A480, 175–180.
  • Zhang WH, Qiu XM, Sun DQ, Han LJ: ‘Effects of resistance spot welding parameters on microstructures and mechanical properties of dissimilar material joints of galvanised high strength steel and aluminium alloy’, Sci. Technol. Weld. Join., 2011, 16, 153–161.
  • Pouranvari M, Marashi SPH: ‘Dissimilar spot welds of AISI 304/AISI 1008: metallurgical and mechanical characterization’, Steel Res. Int., 2011, 82, 1355–1361.
  • Alenius M, Pohjanne P, Somervuori M, Hanninen H: ‘Exploring the mechanical properties of spot welded dissimilar joints for stainless and galvanized steels’, Weld. J., 2006, 85, 305s–313s.
  • Poggio S, Ponte M, Gambaro C, Adamowski J: ‘Resistance spot welding of advanced high strength steel DP600’, Proc. 1st International Conference on ‘Super high strength steels’, Rome, Italy, Novemer 2005, 1–13, IM (Associazione Italiana di Metallurgia) and CSM (Centro Sviluppo Materiali).
  • Marashi SPH, Pouranvari M, Salehi M, Abedi A, Kaviani S: ‘Overload failure behaviour of dissimilar thickness resistance spot welds during tensile shear test’, Mater. Sci. Technol., 2010, 26, (10), 1220–1225.
  • Tavasolizadeh A, Marashi SPH, Pouranvari M: ‘Mechanical performance of three thickness resistance spot welded low carbon steel’, Mater. Sci. Technol., 2011, 27, 219–224.
  • Nielsen CV, Friis KS, Zhang W, Bay N: ‘Three-sheet spot welding of advanced high-strength steels’, Weld. J. (Miami, Fla), 2011, 90, 32s–40s.
  • Cho Y, Rhee S: ‘Experimental study of nugget formation in resistance spot welding’, Weld. J. (Miami, Fla), 2003, 82, 195/S–201/S.
  • Jun J, Rhee S: ‘Study on spatter reduction of resistance spot welding of SPRC440 using hemispherically concaved electrode’, Sci. Technol. Weld. Join., 2012, 17, 333–337.
  • Zhang P, Xie J, Wang YX, Chen JQ: ‘Effects of welding parameters on mechanical properties and microstructure of resistance spot welded DP600 joints’, Sci. Technol. Weld. Join., 2011, 16, 567–574.
  • Khan MS, Bhole SD, Chen DL, Biro E, Boudreau G, van Deventer J: ‘Welding behaviour, microstructure and mechanical properties of dissimilar resistance spot welds between galvannealed HSLA350 and DP600 steels’, Sci. Technol. Weld. Join., 2009, 14, 616–625.
  • Li YB, Liang CP, Zhang YS, Lin ZQ: ‘Application of electrode force change in single sided resistance spot welding using servo gun’, Sci. Technol. Weld. Join., 2008, 13, 671–678.
  • Yang HG, Hu SJ, Zhang YS, Li YB, Lai XM: ‘Experimental study of single sided sheet to tube resistance spot welding’, Sci. Technol. Weld. Join., 2007, 12, 530–535.
  • Harlin N, Jones TB, Parker JD: ‘Weld growth mechanisms during resistance spot welding of two and three thickness lap joints’, Sci. Technol. Weld. Join., 2002, 7, 35–41.
  • Pouranvari M, Marashi SPH: ‘Weld nugget formation and mechanical properties of three-sheet resistance spot welded low carbon steel’, Can. Metall. Q., 2011, 51, 105–109.
  • Khan MS, Bhole SD, Chen DL, Boudreau G, Biro E, Deventer JV: ‘Resistance spot welding characteristics and mechanical properties of galvannealed HSLA 350 steel’, Can. Metall. Q., 2009, 48, 303–310.
  • Na SJ, Park SW: ‘A theoretical study on electrical and thermal response in resistance spot welding’, Weld. J. (Miami, Fla), 1996, 75, 233-s.
  • Han Z, Orozco J, Indacochea JE, Chen CH: ‘Resistance spot welding: a heat transfer study’, Weld. J. (Miami, Fla), 1989, 68, 363s–371s.
  • Cho HS, Cho YJ: ‘Study of the thermal behavior in resistance spot welds’, Weld. J. (Miami, Fla), 1989, 68, 236s–244s.
  • Williams NT, Parker JD: ‘Review of resistance spot welding of steel sheets Part 2 factors influencing electrode life’, Int. Mater. Rev., 2004, 49, 77–108.
  • Patil RR, Anurag Tilak CJK, Srivastava V, De A: ‘Minimising electrode wear in resistance spot welding of aluminium alloys’, Sci. Technol. Weld. Join., 2011, 16, 509–513.
  • Kondo M, Nagata H, Nishimura A, Kokawa H: ‘Degradation mechanism of electrode tip during resistance spot welding of aluminium alloy sheets’, Sci. Technol. Weld. Join., 2011, 16, 126–132.
  • Kondo M, Konishi T, Nomura K, Kokawa H: ‘Degradation mechanism of electrode tip during alternate resistance spot welding of zinc coated and uncoated steel sheets’, Sci. Technol. Weld. Join., 2010, 15, 76–80.
  • Gould JE, Peterson W: ‘Analytical modelling of electrode wear occurring during resistance spot welding’, Sci. Technol. Weld. Join., 2008, 13, 248–253.
  • Chang BH, Zhou Y, Lum I, Du D: ‘Finite element analysis of effect of electrode pitting in resistance spot welding of aluminium alloy’, Sci. Technol. Weld. Join., 2005, 10, 61–66.
  • De A, Dorn L, Gupta OP: ‘Analysis and optimisation of electrode life for conventional and compound tip electrodes during resistance spot welding of electrogalvanised steels’, Sci. Technol. Weld. Join., 2000, 5, 49–57.
  • Rashid M, Medley JB, Zhou Y: ‘Electrode worksheet interface behaviour during resistance spot welding of Al alloy 5182’, Sci. Technol. Weld. Join., 2009, 14, 295–304.
  • Pouranvari M, Marashi SPH: ‘Factors affecting mechanical properties of resistance spot welds’, Mater. Sci. Technol., 2010, 26, 1137–1144.
  • Peterson W: ‘Dilution of weld metal to eliminate interfacial fractures of spot welds in high and ultra-high strength steels’, Proc. ICAWT 1997 Int. Conf. on ‘Advances in welding technology’, Columbus, OH, USA, September 1997, 331–346, Woodhead Publishing Ltd.
  • Shi G, Westgate SA: ‘Techniques for improving the weldability of TRIP steel using resistance spot welding’, Proc. 1st Int. Conf. on ‘Super high strength steels’, Rome, Italy, November 2005, IM (Associazione Italiana di Metallurgia) and CSM (Centro Sviluppo Materiali).
  • Shi G, Westgate SA: ‘Techniques for improving the resistance spot weldability of 1·6–2·0 mm ultra-high strength steels for automotive applications’, TWI report, TWI, Cambridge, UK, 2005.
  • Chuko W, Gould JE: ‘Development of appropriate resistance spot welding practice for transformation-hardened steels’, Report to the American Iron and Steel Institute, US Department of Energy, Washington, DC, USA, 2002.
  • Jahandideh AR, Hamedi M, Mansourzadeh SA, Rahi A: ‘An experimental study on effects of postheating parameters on resistance spot welding of SAPH440 steel’, Sci. Technol. Weld. Join., 2011, 16, 669–675.
  • Bohr J, Jiang C, Sang Y: ‘Resistance spot welding of advanced high strength steel, a comparative study of joint efficiency’, Proc. 5th Int. Semin. on ‘Advances in resistance welding’, Toronto, Canada, September 2008, 147–166, SWANTEC Software and Engineering ApS and Huys Industries Ltd.
  • Heuschkel J: ‘The expression of spot-weld properties’, Weld. J., 1952, 31, 931s–943s.
  • Sakuma Y, Oikawa H: ‘Factors to determine static strengths of spot-weld for high strength steel sheets and developments of high-strength steel sheets with strong and stable welding characteristics’, Nippon Steel Tech. Rep., 2003, (88), 33–38.
  • Svensson LE: ‘Prediction of mechanical properties of steel spot-welds’, Proc. 7th Int. Conf. on ‘Trends in welding research’, Pine Mountain, GA, USA, May 2005, 41–46, ASM International.
  • Lin SH, Pan J, Wu SR., Tyan T, Wung P: ‘Failure loads of spot-welds under combined opening and shear static loading conditions’, Int. J. Solids Struct., 2001, 39, 19–39.
  • Tumuluru MD: ‘Effects of baking on the structure and properties of resistance spot welds in 780 MPa dual-phase and TRIP steels’, Weld. J., 2012, 89, 91–100.
  • Lalam SH: ‘Weldability of AHSS’, Proc. Great Designs in Steels Seminar, Livonia, MI, USA, March 2005, AISI, Available at http://www.autosteel.org/Great%20Designs%20in%20Steel.aspx
  • Smith S, Den. Uijl NJ, Vendervelt T, Okada T, Uchihara M, Fukui K: ‘The effect of ageing on the spot weld strength of AHSS and the consequences for testing procedures’, Weld. World, 2010, 54, R.12–R.26.
  • Miller KW, Chao YJ, Wang PC: ‘Quasi-static and impact strength of fatigue damaged spot welds’, SAE technical paper no. 2003-01-0610, SAE International, Warrendale, PA, USA, 2003.
  • Hambling SJ, Jones TB, Fourlaris G: ‘Influence of steel strength and loading mode on fatigue properties of resistance spot welded H beam components’, Mater. Sci. Technol., 2004, 20, 1143–1150.
  • Hilditch TB, Speer JG, Matlock DK: ‘Effect of susceptibility to interfacial fracture on fatigue properties of spot-welded high strength sheet steel’, Mater. Des., 2007, 28, 2566–2576.
  • Adib H, Gilgert J, Pluvinage G: ‘Fatigue life duration prediction for welded spots by volumetric method’, Int. J. Fatigue, 2004, 26, 81–94.
  • Radaj D, Sonsino CM: ‘Fatigue assessment of welded joints by local approaches’; 1998, Abington, Abington Publishing.
  • Zhang Y, Taylor D: ‘Sheet thickness effect of spot welds based on crack propagation’, Eng. Fract. Mech., 2005, 67, 55–63.
  • Swellam MH, Banas G, Lawrence FV: ‘A fatigue design parameter for spot welds’, Fatigue Fract. Eng. Mater. Struct., 1994, 17, 1197–1204.
  • Long X, Khanna SK: ‘Fatigue properties and failure characterization of spot welded high strength steel sheet’, Int. J. Fatigue, 2007, 29, 879–886.
  • Withers PJ, Bhadeshia HKDH: ‘Residual stress. Part 1: Measurement techniques’, Mater. Sci. Technol., 2001, 17, 355–365.
  • Withers PJ, Bhadeshia HKDH: ‘Residual stress. Part 2: Nature and origins’, Mater. Sci. Technol., 2001, 17, 366–375.
  • Long X, Khanna SK, Lawrence F: ‘Effect of fatigue loading and residual stress on microscopic deformation mechanisms in a spot welded joint’, Mater. Sci. Eng. A, 2007, 454–455, 398–406.
  • Bae DH, Sohn IS, Hong JK: ‘Assessing the effects of residual stresses on the fatigue strength of spot welds’, Weld J., 2003, 82, 18s–23s.
  • Khanna SK, Long X: ‘Residul stresses in reistsance spot welded steel joints’, Sci. Technol. Weld. Join., 2008, 13, 278–288.
  • Zhang H, Zhou M, Hu SJ: ‘Impact strength measurement of spot welds’, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 2001, 215, 403–441.
  • Ewing KW, Cheresh M, Thompson R, Kukuchek P: ‘Static and impact strengths of spot-welded HSLA and low carbon steel’, SAE technical paper 820281, SAE International, Warrendale, PA, USA, 1982.
  • Fine TE, Fostini RV, Levy BS, Preban AG, Stevenson R: ‘Evaluation of a new, dual-phase, cold-rolled steel - mechanical properties, aging responses, and weldability’, SAE technical paper 780136, SAE International, Warrendale, PA, USA, 1978.
  • Karve G, Zhang H: ‘Dependence of impact performance on process parameters and weld attributes for spot-welded advanced high strength steels’, Proc. Int. Mechanical Engineering Congress & Exposition (IMECE) 2004, Anaheim, CA, USA, November 2004, American Society of Mechanical Engineers, IMECE2004–59130.
  • Gould JE, Peterson W: ‘Advanced materials requires advanced knowledge: understanding resistance spot weld performance on AHSS’, Fabricator, 2005, 35, 34–35.
  • Yin YH, Sun N, North TH, Hu SS: ‘Hook formation and mechanical properties in AZ31 friction stir spot welds’, J. Mater. Process. Technol., 2010, 210, 2062–2070.
  • Lin PC, Lin SH, Pan J, Pan T, Nicholson JM, Garman MA: ‘Microstructures and failure modes of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets’, SAE technical paper no. 2004-01-1330, SAE International, Warrendale, PA, USA, 2004.
  • Fanelli P, Vivio F, Vullo V: ‘Experimental and numerical characterization of friction stir spot welded joints’, Eng. Fract. Mech., 2012, 81, 17–25.
  • Hirasawaa S, Badarinarayanb H, Okamotoc K, Tomimurad T, Kawanamia T: ‘Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method’, J. Mater. Process. Technol., 2010, 210, 1455–1463.
  • Yanga Q, Mironovb S, Satob YS, Okamotoc K: ‘Material flow during friction stir spot welding’, Mater. Sci. Eng. A, 2010, A527, 4389–4398.
  • Horie S, Shinozaki K, Yamamoto M, North TH: ‘Experimental investigation of material flow during friction stir spot welding’, Sci. Technol. Weld. Join., 2010, 15, 666–670.
  • da Silva AAM, Aldanondo E, Alvarez P, Arruti E, Echeverría A: ‘Friction stir spot welding of AA 1050 Al alloy and hot stamped boron steel (22MnB5)’, Sci. Technol. Weld. Join., 2010, 15, 682–687.
  • Miles MP, Ridges CS, Hovanski Y, Peterson J, Santella ML, Steel R: ‘Impact of tool wear on joint strength in friction stir spot welding of DP 980 steel’, Sci. Technol. Weld. Join., 2011, 16, 642–647.
  • Nadan R, DebRoy T, Bhadeshia HKDH: ‘Recent advances in friction-stir welding – process, weldment structure and properties’, Prog. Mater. Sci., 2008, 53, 980–1023.
  • Khan MI, Kuntz ML, Su P, Gerlich A, North T, Zhou Y: ‘Resistance and friction stir spot welding of DP600: a comparative study’, Sci. Technol. Weld. Join., 2007, 12, 175–182.
  • Tozakia Y, Uematsub Y, Tokaji K: ‘Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys’, Int. J. Mach. Tools Manuf., 2007, 47, 2230–2236.
  • Fena Z, Santella ML, David SA, Steel RJ, Packer SM, Pan T: ‘Friction-stir spot welding of advanced high-strength steel: a feasibility study’, SAE Trans., 2005, 114, 592–598.
  • Hovanski Y, Santella ML, Grant GJ: ‘Friction stir spot welding of hot-stamped boron steel’, Scr. Mater., 2007, 57, 873–876.
  • Huang T, Sato YS, Kokawa H, Miles MP, Kohkonen K, Siemssen B, Steel RJ, Packer S: ‘Microstructural evolution of DP980 steel during friction bit joining’, Metall. Mater. Trans. A, 2009, 40A, 2994–3000.
  • Hong S, Sripichai K, Yu C, Avery K, Pan J, Pan TY, Sentella M: ‘Failure modes of friction stir spot welds in lap-shear specimens of dissimilar advanced high strength steels under quasi-static and cyclic loading conditions’, SAE technical paper 2012-01-0479, SAE International, Warrendale, PA, USA, 2012.
  • Baek SW, Choi DH, Lee CY, Ahn BW, Yeon YM, Song K, Jung SB: ‘Microstructure and mechanical properties of friction stir spot welded galvanized steel’, Mater. Trans., 2010, 51, 1044–1050.
  • Cam G: ‘Friction stir welded structural materials: beyond Al alloys’, Int. Mater. Rev., 2011, 56, 1–48.
  • Lomholt TC, Adachi Y, Peterson J, Steel R, Pantleon K, Somers MAJ: ‘Microstructure characterization of friction stir spot welded TRIP steel’, Adv. Mater. Res., 2011, 409, 275–280.
  • Mazzaferroab CCP, Ramosab FD, Mazzaferrob JAE, Rosendoab TDS, Tierac MAD, da Silvad AM, dos Santosa JF, Reguly A: ‘Microstructure evaluation and mechanical properties of a friction stir spot welded TRIP 800 steel’, Weld. Int., 2011, 25, 683–690.
  • Sun YF, Fujii H, Takaki N, Okitsu Y: ‘Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique’, Mater. Des., 2012, 37, 384–392.
  • Bhadeshia HKDH, DebRoy T: ‘Critical assessment: friction stir welding of steels’, Sci. Technol. Weld. Join., 2009, 14, 193–196.
  • Thomas WM, Threadgill PL, Nicholas ED: ‘Feasibility of friction stir welding steel’, Sci. Technol. Weld. Join., 1999, 4, 365–372.
  • Lienert TJ, Stellwag WL, Grimmett BB, Warke RW: ‘Friction stir welding studies on mild steel’, Weld. J., 2003, 82, 1s–9s.
  • Cui L, Fujii H, Tsujib N, Nogi K: ‘Friction stir welding of a high carbon steel’, Scr. Mater., 2007, 56, 637–640.
  • Chung YD, Fujii H, Uejib R, Tsuji N: ‘Friction stir welding of high carbon steel with excellent toughness and ductility’, Scr. Mater., 2010, 63, 223–226.
  • Mishra RS, Ma ZY: ‘Friction stir welding and processing’, Mater. Sci. Eng. R: Rep., 2005, 50, 1–78.
  • Santella ML, Grant GJ, Feng Z, Hovanski Y, Carpenter JA, Sklad PS: ‘Friction-stir spot welding of advanced high-strength steel’, FY 2006 progress report, Oak Ridge National Laboratory & Pacific Northwest National Laboratory, Oak Ridge, TN, USA, 2006.
  • Tozaki Y, Uematsu Y, Tokaji K: ‘A newly developed tool without probe for friction stir spot welding and its performance’, J. Mater. Process. Technol., 2010, 210, 844–851.
  • Miles MP, Feng Z, Kohkonen K, Weickum B, Steel R, Lev L: ‘Spot joining of AA 5754 and high strength steel sheets by consumable bit’, Sci. Technol. Weld. Join., 2010, 15, (4), 325–330.
  • Miles MP, Kohkonen K, Packer S, Steel R, Siemssen B, Sato YS: ‘Solid state spot joining of sheet materilas using consumable bit’, Sci. Technol. Weld. Join., 2009, 14, (1), 72–77.
  • Uematsu Y, Tokaji K, Tozaki Y, Kurita T, Murata S: ‘Effect of re-filling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al–Mg–Si alloy’, Int. J. Fatigue, 2008, 30, 1956–1966.
  • Badarinarayan H, Yang Q, Hunt F: ‘Effect of pin geometry on static strength of friction stir spot welds’, SAE technical paper 2008-01-0147, SAE International, Warrendale, PA, USA, 2008.
  • Sato YS, Harayama N, Kokowa H, Inoue H, Tadokoro Y, Tsuge S: ‘Evaluation of microstructure and properties in friction stir welded superaustenitic stainless steel’, Sci. Technol. Weld. Join., 2009, 14, 202–209.
  • Weinberger T, Enzinger N, Cerjak H: ‘Microstructural and mechanical characterisation of friction stir welded 15-5PH steel’, Sci. Technol. Weld. Join., 2009, 14, 210–215.
  • Ohashi R, Fujimoto M, Mironov S, Sato YS, Kokowa H: ‘Effect of contamination on microstructure in friction stir spot welded DP590 steel’, Sci. Technol. Weld. Join., 2009, 14, 221–227.
  • Ohashi R, Fujimoto M, Mironov S, Sato YS, Kokowa H: ‘Microstructural characterization of high-strength steel lap joint produced by friction spot joining’, Metall. Mater. Trans. A, 2009, 40A, 2033–2035.
  • Eagar TW: ‘Resistance welding: a fast, inexpensive and deceptively simple process’, in ‘International trends in welding science and technology’, (ed. , David S A, Vitek J M), 347; 1992, Materials Park, OH, ASM International.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.