571
Views
46
CrossRef citations to date
0
Altmetric
Original Article

Metallographic and fracture characteristics of resistance spot welded TWIP steels

, &
Pages 711-720 | Received 29 Apr 2013, Accepted 19 Jun 2013, Published online: 03 Dec 2013

References

  • Frommeyer G, Brux U, Neumann P: ‘Supra-ductile and high-strength manganese – TRIP/TWIP steels for high energy absorption purposes’, ISIJ Int., 2003, 43, 438–446.
  • Grassel O, Frommeyer G, Derder C: ‘Phase transformations and mechanical properties of Fe–Mn–Si–Al TRIP-steels’, J. Phys. IV France, 1997, 7, 383–388.
  • Grassel O, Kruger L, Frommeyer G, Meyer L: ‘High strength Fe–Mn–Al, Si) TRIP/TWIP steels development – properties – application’, Int. J. Plast., 2000, 16, 1391–1409.
  • Allain S, Chateau J.-P, Bouaziz O, Migot S, Guelton N: ‘Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys’, Mater. Sci. Eng. A, 2004, A387–A389, 158–162.
  • Chen L, Zhao Y, Qin X: ‘Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review’, Acta Metall. Sinica, 2013, 26, 1–15.
  • Saeed-Akbari A, Imlau J, Prahl U, Bleck W: ‘Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels’, Metall. Mater. Trans. A, 2009, 40A, 3076–3090.
  • De Cooman B, Chin K.-G, Kim J: ‘High Mn TWIP steels for automotive applications’, ‘New trends and developments in automotive system engineering’, 101–128; 2011, Janeza Trdine, Croatia, InTech.
  • Zhang H, Senkara J: ‘Resistance welding – fundamentals and applications’; 2006, London, Taylor & Francis/CRC Press.
  • Mujica L, Weber S, Pinto H, Thomy C, Vollertsen F: ‘Microstructure and mechanical properties of laser-welded joints of TWIP and TRIP steels’, Mater. Sci. Eng. A, 2010, A527, 2071–2078.
  • Mujica L, Weber S, Thomy C, Vollertsen F: ‘Microstructure and mechanical properties of laser welded austenitic high manganese steels’, Sci. Technol. Weld. Join., 2009, 14, 517–522.
  • Saha DC, Han S, Chin KG, Choi I, Park Y.-D: ‘Weldability evaluation and microstructure analysis of resistance-spot-welded high-Mn steel in automotive application’, Steel Res. Int., 2012, 83, 352–357.
  • ‘Resistance welding – weldability. Part 2: alternative procedures for the assessment of sheet steels for spot welding’, ISO 18278- 2:2004E, ISO, Geneva, Switzerland, 2004.
  • Sun X, Stephens EV, Khaleel MA: ‘Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds’, Weld. J., 2007, 86, 18-s–25-s.
  • Baltazar Hernandez VH, Kuntz ML, Khan MI, Zhou Y: ‘Influence of microstructure and weld size on the mechanical behaviour of dissimilar AHSS resistance spot welds’, Sci. Technol. Weld. Join., 2008, 13, 769–776.
  • Oikawa H, Sakiyama T, Ishikawa T, Murayama G, Takahashi Y: ‘Resistance spot weldability of high strength steel (HSS) sheets for automobiles’, Nippon Steel Tech. Rep., 2007, 95, 39–45.
  • Kaiser JG, Dunn GJ, Eagar TW: ‘The effect of electrical resistance on nugget formation during spot welding’, Weld. J., 1982, 61, 167-s–174-s.
  • Senkara J, Zhang H, Hu S: ‘Expulsion prediction in resistance spot welding’, Weld. J., 2004, 83, 123-s–132-s.
  • Pouranvari M, Marashi S: ‘Critical review of automotive steels spot welding: process, structure and properties’, Sci. Technol. Weld. Join., 2013, 18, 391–403.
  • Pouranvari M, Asgari HR, Mosavizadch SM, Marashi PH, Goodarzi M: ‘Effect of weld nugget size on overload failure mode of resistance spot welds’, Sci. Technol. Weld. Join., 2007, 12, 217–225.
  • Marya M, Gayden XQ: ‘Development of requirements for resistance spot welding dual-phase (DP600) steels part 2: statistical analyses and process maps’, Weld. J., 2005, 85, 197-s–204-s.
  • Chao YJ: ‘Ultimate strength and failure mechanism of resistance spot weld subjected to tensile, shear, or combined tensile/shear loads’, J. Eng. Mater. Technol., 2003, 125, 125–132.
  • Zuniga S, Sheppard SD: ‘Resistance spot weld failure loads and modes in overload conditions’, ASTM Spec. Tech. Publ., 1997, 1296, 469–489
  • Pouranvari M: ‘Prediction of failure mode in AISI 304 resistance spot welds’, Assoc. Metall. Eng. Serbia, 2011, 17, 23–29.
  • Pouranvari M, Marashi SP: ‘Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors’, Mater. Sci. Eng. A, 2011, A528, 837–8343.
  • Saha DC, Park Y: ‘Weldability and liquation cracking characteristics on resistance-spot-welded high-Mn austenitic steel’, Proc. 9th Int. Conf. on ‘Trends in welding research’, Chicago, IL, USA, June 2012, ASM International, 330–334.
  • Sakuma Y, Oikawa H: ‘Factors to determine static strength of spot welding for high strength steel sheet and development of high strength steel sheet with strong and stable characteristics’, Nippon Steel Tech. Rep., 2003, 88, 33–38.
  • Uijl ND, Okada T, Mooleviet T, Mennes A, van der AA E, Smith S, Nishibata H, van der Veldt T, Fukui K: ‘Performance of resistance spot-welded joints in advanced high strength steel in static and dynamic tensile tests’, Weld. World, 2012, 56, 51–63.
  • Dancette S, Fabregue D, Massardier V, Merlin J, Dupuy T, Bouzekri M: ‘Experimental and modeling investigation of the failure resistance of advanced high strength steels spot welds’, Eng. Fract. Mech., 2011, 78, 2259–2272.
  • Kou S: ‘Welding metallurgy’; 2003, Hoboken, NJ, Wiley & Sons, Inc.
  • Lippold JC, Kotecki DJ: ‘Welding metallurgy and weldability of stainless steels’, 153–166; 2005, New York, John Wiley & Sons, Inc.
  • Kujanpaeae VP, David SA: ‘Microsegregation in high-molybdenum austenitic stainless steel laser beam and gas tungsten arc welds’, Proc. Laser Application Conf., Arlington, VA, USA, 1986, Oak Ridge National Lab., TN (USA); Lappeenrannan Teknillinen Korkeakoulu (Finland), 63–70.
  • Arata Y, Matsuda F, Katamaya S: ‘Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report I) – fundamental investifation on solidification behavior of fully austenitic and duplex microstructures and effect of ferrite on microsegregation’, Trans. JWRI, 1976, 5, 35–51.
  • Suutala N, Takalo T, Moisio T: ‘Ferritic–austenitic solidification mode in austenitic stainless steel welds’, Mater. Metall. Trans. A, 1980, 11A, 717–725.
  • Katamaya S, Fujimoto T, Matsunawa A: ‘Correlation among solidification process, microstructure, microsegregation and solidification cracking susceptibility in stainless steel weld metals’, Trans. JWRI, 1985, 14, 123–138.
  • Mujica L, Weber S, Hunold G, Theisen W: ‘Development and characterization of novel corrosion-resistant TWIP steels’, Steel Res. Int., 2011, 82, 26–31.
  • Roncery LM, Weber S, Theisen W: ‘Welding of twinning-induced plasticity steels’, Scr. Mater., 2012, 66, 997–1001.
  • Dopont J.N., Lippold J.C., Kiser S.D., ‘Solid-solution strengthened Ni-base alloys’, in ‘Welding metallurgy and weldability of nickel-base alloys’, 118–128; 2009, Hoboken, NJ, John Wiley & Sons, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.