23
Views
8
CrossRef citations to date
0
Altmetric
Articles

Fuzzy C-means-driven FHCE contextual segmentation method for mammographic microcalcification detection

, , , , , , & show all
Pages 146-154 | Published online: 18 Jul 2013

REFERENCES

  • Patricio, M. A. and Maravall, D. A comparative study of contextual segmentation methods for digital angiogram analysis. Cybern. Syst., 2004, 35, 63–83.
  • Sabel, M. and Aichinger, H. Recent developments in breast imaging. Phys. Med. Biol., 1996, 41, 315–368.
  • Bazzocchi, M., Facecchia, I., Zuiani, C., Londero, V., Smania, S., Bottigli, U. and Delogu, P. Application of a computer-aided detection (CAD) system to digitalized mammograms for identifying microcalcifications. Radiol. Med., 2001, 101, 334–340.
  • Cheng, H. D., Cai, X., Chen, X., Hu, L. and Lou, X. Computer-aided detection and classification of microcalcifications in mammograms: a survey. Patt. Recogn., 2003, 36, 2967–2991.
  • Nakayama, R., Abe, H., Shiraishi, J. and Doi, K. Potential usefulness of similar images in the differential diagnosis of clustered microcalcifications on mammograms. Radiology, 2009, 253, 625–631.
  • Stewart, J. A. Breast cancer: 1. Screening and early management. Hosp. Pract., 1994, 29, 81–85, 89–90.
  • Takako, M., Maya, Y., Akiko, K., Sumiya, N., Chika, H. and Tokiko, E. A comparison between film-screen mammography and full-field digital mammography utilizing phase contrast technology in breast cancer screening programs. Lect. Notes Comput. Sci., 2008, 5116, 48–54.
  • Uematsu, T., Kasami, M. and Yuen, S. A cluster of microcalcifications: women with high risk for breast cancer versus other women. Breast Cancer, 2009, 16, 307–314.
  • Mavroforakis, M., Georgiou, H., Dimitropoulos, N., Cavouras, D. and Theodoridis, S. Significance analysis of qualitative mammographic features, using linear classifiers, neural networks and support vector machines. Eur. J. Radiol., 2005, 54, 80–89.
  • Papadopoulos, A., Fotiadis, D. and Likas, A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artif. Intell. Med., 2005, 34, 141–150.
  • Karssemeijer, N., Otten, J. D. M., Rijken, H. and Holland, R. Computer aided detection of masses in mammograms as decision support. Br. J. Radiol., 2006, 79, S123–S126.
  • Karssemeijer, N., Otten, J. D., Verbeek, A. L., Groenewoud, J. H., de Koning, H. J., Hendriks, J. H. and Holland, R. Computer-aided detection versus independent double reading of masses on mammograms. Radiology, 2003, 227, 192–200.
  • Rangayyan, R. M., Mudigonda, N. R. and Desautels, J. E. Boundary modelling and shape analysis methods for classification of mammographic masses. Med. Biol. Eng. Comput., 2000, 38, 487–496.
  • Nandi, R. J., Nandi, A. K., Rangayyan, R. M. and Scutt, D. Classification of breast masses in mammograms using genetic programming and feature selection. Med. Biolog. Eng. Comput., 2006, 44, 683–694.
  • Ferrari, R. J., Rangayyan, R. M., Desautels, J. E., Borges, R. A. and Frère, A. F. Identification of the breast boundary in mammograms using active contour models. Med. Biolog. Eng. Comput., 2004, 42, 201–208.
  • Mu, T., Nandi, A. K. and Rangayyan, R. M. Classification of breast masses using selected shape, edge-sharpness, and texture features with linear and kernelbased classifiers. J. Digital Imag., 2008, 21, 153–169.
  • Suliga, M., Deklerck, R. and Nyssen, E. Markov random field-based clustering applied to the segmentation of masses in digital mammograms. Comput. Med. Imag. Graph., 2008, 32, 502–512.
  • Heath, M., Bowyer, K., Kopans, D., Moore, R. and Kegelmeyer, P. The digital database for screening mammography, Proc. 3rd Int. Workshop on Digital mammography, June 1996, Chicago, IL, USA, Medical Physics Publishing, pp. 212–218.
  • Suckling, J. The Mammographic Image Analysis Society digital mammogram database, Proc. 2nd Int. Workshop on Digital Mammography, York, UK, July 1994, York, Elsevier, pp. 375–378.
  • Davies, D. H. and Dance, D. R. Automatic computer detection of clustered calcifications in digital mammograms. Phys. Med. Biol., 1990, 35, 1111–1118.
  • Fu, J. C., Leeb, S. K., Wongc, S. T. C., Yeha, J. Y., Wanga, A. H. and Wud, H. K. Image segmentation feature selection and pattern classification for mammo-graphic microcalcifications. Comput. Med. Imag. Graph., 2005, 29, 419–429.
  • Abdul-Karim, M. A., Al-Kofahi, K., Brown, E. B., Jain, R. K. and Roysam, B. Automated tracing and change analysis of angiogenic vasculature from in vivo multiphoton confocal image time series. Microvasc Res, 2003, 66, 113–125.
  • Panchal, R. and Verma, B. Neural-association of microcalcification patterns for their reliable classification in digital mammography. Int. J. Patt. Recogn. Artif Intell., 2006, 20, 971–983.
  • Chitre, Y., Dhawan, A. T. and Moskowitz, M. Artificial neural network based classification of mammographic microcalcifications using image structure features. Int. J. Patt. Recogn. Artif. Intell., 1993, 7, 1377–1401.
  • Stoutjesdijk, M. J., Veltman, J., Huisman, H., Karssemeijer, N., Barentsz, J. O., Blickman, J. G. and Boetes, C. Automated analysis of contrast enhancement in breast MRI lesions using mean shift clustering for ROI selection. J. Magn. Reson. Imag., 2007, 26, 606–614.
  • Theodoridis, S. and Koutroubas, K. Pattern Recognition, 1999 (Academic Press, New York).
  • Gonzalez, R. C. and Woods, R. E. Digital Image Processing, 1992 (Addison-Wesley, Reading, MA).
  • Pizer S. M. and Amburn, E. P. Adaptive histogram equalization and its variations. Comput. Vision Graph. Image Process., 1987, 39, 355–368.
  • Xu, Y. and Pitot, H. C. A software package to improve image quality and isolation of objects of interest for quantitative stereology studies of rat hepatocarcinogenesis. Comput. Methods Programs Biomed., 2006, 81, 236–245.
  • Soille, P. Morphological Image Analysis, 1999 (Springer, Berlin).
  • Ibrahim, N., Fujita, H., Hara, T. and Endo, T. Automated detection of clustered microcalcifications on mammograms: CAD system application to MIAS database. Phys. Med. Biol., 1997, 42, 2577–2589.
  • Cheng, H. D., Lui, Y. M. and Freimanis, R. I. A novel approach to microcalcification detection using fuzzy logic technique. IEEE Trans. Med. Imag., 1998, 17, 442–450.
  • Papadopoulos, A., Fotiadis, D. I. and Likas, A. An automatic microcalcification detection system based on a hybrid neural network classifier. Artif. Intell. Med., 2002, 25, 149–167.
  • Chan, H. P., Doi, K., Vyborny, C. J., Schmidt, R. A., Metz, C. E., Lam, K. L., Ogura, T., Wu, Y. Z. and MacMahon, H. Improvements in radiologists’ detection of clustered microcalcifications on mammograms. The potential of computer-aided diagnosis. Invest. Radiol., 1990, 25, 102–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.