875
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Carbon spheres obtained via citric acid catalysed hydrothermal carbonisation of cellulose

, , , &
Pages 546-551 | Received 21 Jan 2013, Accepted 30 Mar 2013, Published online: 06 Dec 2013

References

  • Reddy A. L. M. and Ramaprabhu S.: ‘Synthesis and characterization of magnetic metal-encapsulated multi-walled carbon nanobeads’, Nano. Res. Lett., 2008, 3, 76–81.
  • Dong Z. P., Yang B., Jin J., Li J., Kang H. W., Zhong X., Li R. and Ma J. T.: ‘Quinoline group modified carbon nanotubes for the detection of zinc ions’, Nano. Res. Lett., 2009, 4, 335–340.
  • Ajayan P. M.: ‘Nanotubes from carbon’, Chem. Rev., 1999, 99, 1787–1800.
  • Lee S. J., Jung J. J., Kim M. A., Kim Y. R. and Park J. K.: ‘Synthesis of highly stable graphite-encapsulated metal (Fe, Co, and Ni) nanoparticles’, J. Mater. Sci., 2012, 10.
  • Zhang M., Yang H., Liu Y. N., Sun X. D., Zhang D. K. and Xue D. F.: ‘Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process’, Carbon, 2012, 50, 2155–2161.
  • Wen Z. H., Wang Q., Zhang Q. and Li J. H.: ‘Hollow carbon spheres with size distribution as anode catalyst support for direct methanol fuel cells’, Electrochem. Commun, 2007, 9, 1867–1872.
  • Yi Z. H., Liang Y. G., Lei X. F., Wang C. W. and Sun J. T.: ‘Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries’, Mater. Lett., 2007, 61, 4199–4203.
  • Bruk M. A., Bespalov V. A., Loginov B. A., Loginov V. B., Degtyarev N. A., Degtyarev N. A., Zefirov I. D., Kal’nov V. A., Klochikhina A. V., Kulova T. L., Roginskaya Y. E. and Skundin A. V.: ‘A new type of nanostructure in Si/C composite electrodes for lithium-ion batteries’, Inorg. Mater., 2008, 44, 1086–1090.
  • Discher B. M., Won Y. Y., Ege D. S., Lee J. C. M., Bates F. S., Discher D. E. and Hammer D. A.: ‘Polymersomes: tough vesicles made from diblock copolymers’, Science, 1999, 284, 1143–1146.
  • Meier W. G.: ‘Polymer nanocapsules’, Chem. Soc. Rev., 2000, 29, 295–303.
  • Joo J. B., Kim Y. J., Kim W. Y., Kim P. and Yi J. H.: ‘Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation’, Catal. Commun., 2008, 10, 267–271.
  • Basavalingu B., Byrappa K., Yoshimura M., Madhusudan P. and Dayananda A. S.: ‘Hydrothermal synthesis and characterization of micro to nano sized carbon particles’, J. Mater. Sci., 2006, 41, 1465–1469.
  • Basavalingu B., Madhusudan P., Dayananda A. S., Lal K., Byrappa K. and Yoshimura M.: ‘Formation of filamentous carbon through dissociation of chromium carbide under hydrothermal conditions’, J.Mater. Sci., 2008, 43, 2153–2157.
  • Wang Q., Li H., Chen L. Q. and Huang X. J.: ‘Monodispersed hard carbon spherules with uniform nanopores’, Carbon, 2001, 38, 2211–2214.
  • Mi Y. Z., Hu W. B., Dan Y. M. and Liu Y. L.: ‘Synthesis of carbon micro-spheres by a glucose hydrothermal method’, Mater. Lett., 2008, 62, 1194–1196.
  • Zheng M. B., Cao J. M., Chang X., Wang J., Liu J. S. and Ma X. J.: ‘Preparation of oxide hollow spheres by colloidal carbon spheres’, Mater. Lett., 2006, 60, 2991–2993.
  • Zhuang Z. H. and Yang Z. G.: ‘Preparation and characterization of colloidal carbon sphere/rigid polyurethane of foam composites’, J. Appl. Polym. Sci., 2009, 114, 3863–3869.
  • Yao C. H., Shin Y. S., Wang L. Q., Windisch C. F., Samuels W. D., Arey B. W., Wang C. M., Risen W. M. and Exarhos G. J.: ‘Hydrothermal dehydration of aqueous fructose solution in a closed system’, J. Phys. Chem. C, 2007, 111C, 15141–15145.
  • Cui X. J., Antonietti M. and Yu S. H.: ‘Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates’, Small, 2006, 2, 756–759.
  • Wang Q., Cao F. Y., Chen Q. W. and Chen C. L.: ‘Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol’, Mater. Lett., 2005, 59, 3738–3741.
  • Shen Y., Lin Y., Li M. and Nan C. W.: ‘High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer’, Adv. Mater., 2007, 19, 1418–1422.
  • Makowski P., Cakan R. D., Antonieitti M., Goettmann F. and Titirici M. M.: ‘Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon’, Chem. Commun., 2008, 8, 999–1001.
  • Yu J. C., Hu X. L., Li Q., Zheng Z. and Xu Y. M.: ‘Synthesis and characterization of core-shell selenium/carbon colloids and hollow carbon capsules’, Chem-Eur. J., 2005, 12, 548–552.
  • Sun X. M. and Li Y. D.: ‘Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles’, Angew. Chem. Int. Ed, 2004, 43, 597–601.
  • Sun X. M. and Li Y. D.: ‘Ga2O3 and GaN semiconductor hollow spheres’, Angew. Chem. Int. Ed, 2004, 43, 3827–3831.
  • Sevilla M. and Fuertes A. B.: ‘Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides’, Chem-Eur. J., 2009, 15, 4195–4203.
  • Xuan S. H., Hao L. Y., Jiang W. Q., Gong X. L., Hu Y. and Chen Z. Y.: ‘A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites’, Nanotechnology, 2007, 18, 035602.
  • Liu H. M., Wang Y. G., Wang K. X., Hosono E. and Zhou H. S.: ‘Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium–ion batteries’, J. Mater. Chem., 2009, 19, 2835–2840.
  • Lou X. W., Li C. M. and Archer L. A.: ‘Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage’, Adv. Mater., 2009, 21, 2536–2539.
  • Wang Y. G., Shi T. J., Li Z. and Tan D. X.: ‘Preparation and characterization of wood ceramics from polyarylacetylene resin/fir powder’, Chin. J. Appl. Chem., 2010, 27, 418–423.
  • Liu S. X., Sun J. and Huang X. H.: ‘Carbon spheres/activated carbon composite materials with Cr(VI) adsorption capacity prepared by a hydrothermal method’, J. Hazard. Mater., 2010, 173, 377–383.
  • Sun X. M. and Li Y. D.: ‘Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly’, Langmuir, 2005, 21, 6019–6024.
  • Yang Z. X., Du G. D., Guo Z. P., Yu X. B., Chen Z. X., Zhang P., Chen G. N. and Liu H. K.: ‘Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties’, J. Mater. Res, 2010, 25, 1516–1524.
  • Li M., Li W. and Liu S. X.: ‘Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method’, J. Mater. Res., 2012, 27, 1117–1123.
  • Sevilla M. and Fuertes A. B.: ‘The production of carbon materials by hydrothermal carbonization of cellulose’, Carbon, 2009, 47, 2281–2289.
  • Titirici M. M., Thomas A., Yu S. H., Müller J. O. and Antonietti M.: ‘A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization’, Chem. Mater., 2007, 19, 4205–4212.
  • Titirici M. M., Antonietti M. and Baccile N.: ‘Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses’, Green. Chem., 2008, 10, 1204–1212.
  • Zavadskii A. E.: ‘X-ray diffraction method of determining the degree of crystallinity of cellulose materials of different anisotropy’, Fibre. Chem., 2004, 36, 425–430.
  • Kabyemela B. M., Adschiri T., Malaluan R. M. and Arai K.: ‘Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics’, Ind. Eng. Chem. Res., 1999, 38, 2888–2895.
  • Ibarra J., Muñoz E. and Moliner R.: ‘FTIR study of the evolution of coal structure during the coalification process’, Org. Geochem., 1996, 24, 725–735.
  • Belgacem M. N., Czeremuszkin G., Sapieha S. and Gandini A.: ‘Surface characterization of cellulose fibres by XPS and inverse gas chromatography’, Cellulose, 1995, 2, 145–157.
  • Sasaki M., Fang Z., Fukushima Y., Adschiri T. F. and Arai K.: ‘Dissolution and hydrolysis of cellulose in subcritacal and supercritical water’, Ind. Eng. Chem. Res., 2000, 39, 2883–2890.
  • Guo H. X., Qi X. H., Li L. Y. and Smith R. L.: ‘Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid’, Bioresour. Technol., 2012, 116, 355–359.
  • Ibbett R., Gaddipati S., Davies S., Hill S. and Tucker G.: ‘The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal–analytical and complementary studies’, Bioresour. Technol., 2011, 102, 9272–9278.
  • Xiao L. P., Shi Z. J., Xu F. and Sun R. C.: ‘Hydrothermal carbonization of lignocellulosic biomass’, Bioresour. Technol., 2012, 118, 619–623.
  • Gao Y., Wang X. H., Yang H. P. and Chen H. P.: ‘Characterization of products from hydrothermal treatment of cellulose’, Energy, 2012, 42, 457–465.
  • Sasaki M., Kabyemela B., Malaluan R., Hirose S., Takeda N., Adschiri T. and Arai K.: ‘Cellulose hydrolysis in subcritical and supercritical water’, J. Supercrit. Fluids, 1998, 13, 261–268.
  • Bacon R. and Tang M. M.: ‘Carbonization of cellulose fibers – II.Physical property study’, Carbon, 1964, 2, 221–225.
  • Yin S. D. and Tan Z. C.: ‘Hydroythermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions’, Appl. Energ, 2012, 92, 234–239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.