90
Views
5
CrossRef citations to date
0
Altmetric
The Listening Brain Symposium

Sensitivity to interaural time differences with binaural implants: Is it in the brain?

, &
Pages S44-S50 | Published online: 18 Jul 2013

References

  • Adriani M., Maeder P., Meuli R., Thiran A.B., Frischknecht R., Villemure J.G., Mayer J., Annoni J.M., Bogousslavsky J., Fornari E., Thiran J.P., Clarke S 2003. Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions. Experimental Brain Research, 153(4): 591–604.
  • Aronoff J.M., Yoon Y.S., Freed D.J., Vermiglio A.J., Pal I., Soli S.D. 2010. The use of interaural time and level difference cues by bilateral cochlear implant users. Journal of the Acoustical Society of America, 127(3): EL87–EL92.
  • Baker C.A., Montey K.L., Pongstaporn T., Ryugo D.K. 2010. Postnatal development of the endbulb of held in congenitally deaf cats. Front Neuroanatomy, 4: 19.
  • Beggs W.D., Foreman D.L. 1980. Sound localization and early binaural experience in the deaf. British Journal of Audiology, 14(2): 41–48.
  • Bernstein L.R. 2001. Auditory processing of interaural timing information: new insights. Journal of Neuroscience Research, 66(6): 1035–1046.
  • Bock G.R., Frank M.P., Steel K.P. 1982. Preservation of central auditory function in the deafness mouse. Brain Research 239(2): 608–612.
  • Brown K.D., Balkany T.J. 2007. Benefits of bilateral cochlear implantation: a review. Current Opinion in Otolaryngology & Head and Neck Surgery, 15(5): 315–318.
  • Campbell R.A., Schnupp J.W., Shial A., King A.J. 2006. Binaural-level functions in ferret auditory cortex: evidence for a continuous distribution of response properties. Journal of Neurophysiology, 95(6): 3742–3755.
  • Casseday J.H., Covey E. 1987. Central Auditory Pathways in Directional Hearing, vol. 5. New York: Springer; pp. 109–145.
  • Clarke S., Bellmann T.A., Maeder P., Adriani M., Vernet O., Regli L., Cuisenaire O., Thiran J.P. 2002. What and where in human audition: selective deficits following focal hemispheric lesions. Experimental Brain Research, 147(1): 8–15.
  • Fallon J.B., Irvine D.R., Shepherd R.K. 2009. Cochlear implant use following neonatal deafness influences the cochleotopic organization of the primary auditory cortex in cats. Journal of Comparative Neurology, 512(1): 101–114.
  • Friauf E., Kandler K. 1990. Auditory projections to the inferior colliculus of the rat are present by birth. Neuroscience Letters, 120(1): 58–61.
  • Fridberger A., Ulfendahl M. 1996. Acute mechanical overstimulation of isolated outer hair cells causes changes in intracellular calcium levels without shape changes. Acta Otolaryngologica, 116: 17–24.
  • Fryauf-Bertschy H., Tyler R.S., Kelsay D.M., Gantz B.J., Woodworth G.G. 1997. Cochlear implant use by prelingually deafened children: the influences of age at implant and length of device use. Journal of Speech Language and Hearing Research, 40(1): 183–199.
  • Grantham D.W., Ashmead D.H., Ricketts T.A., Labadie R.F., Haynes D.S. 2007. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants. Ear and Hearing, 28(4): 524–541.
  • Grothe B., Pecka M., Mcalpine D. 2010. Mechanisms of sound localization in mammals. Physiological Reviews, 90(3): 983–1012.
  • Hancock K.E., Noel V., Ryugo D.K., Delgutte B. 2010. Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. Journal of Neuroscience, 30(42): 14068–14079.
  • Hardie N.A., Martsi-McClintock A., Aitkin L.M., Shepherd R.K. 1998. Neonatal sensorineural hearing loss affects synaptic density in the auditory midbrain. Neuroreport, 9(9): 2019–2022.
  • Hardie N.A., Shepherd R.K. 1999. Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hearing Research, 128(1–2): 147–165.
  • Hartmann R., Shepherd R.K., Heid S., Klinke R. 1997. Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hearing Research, 112(1–2): 115–133.
  • Heffner H.E., Heffner R.S. 1990. Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques. Journal of Neurophysiology, 64(3): 915–931.
  • Heid S., Hartmann R., Klinke R. 1998. A model for prelingual deafness, the congenitally deaf white cat – population statistics and degenerative changes. Hearing Research, 115(1–2): 101–112.
  • Heid S., Jahn-Siebert T.K., Klinke R., Hartmann R., Langner G. 1997. Afferent projection patterns in the auditory brainstem in normal and congenitally deaf white cats. Hearing Research, 110(1–2): 191–199.
  • Jenkins W.M., Merzenich M.M. 1984. Role of cat primary auditory cortex for sound-localization behavior. Journal of Neurophysiology, 52(5): 819–847.
  • Jiang Z.D., Tierney T.S. 1996. Binaural interaction in human neonatal auditory brainstem. Pediatric Research, 39(4 Pt 1): 708–714.
  • Kandler K., Clause A., Noh J. 2009. Tonotopic reorganization of developing auditory brainstem circuits. Nature Neuroscience, 12(6): 711–717.
  • Kandler K., Friauf E. 1993. Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. Journal of Comparative Neurology, 328(2): 161–184.
  • Kandler K., Gillespie D.C. 2005. Developmental refinement of inhibitory sound-localization circuits. Trends Neuroscience 28(6): 290–296.
  • Kapfer C., Seidl A.H., Schweizer H., Grothe B. 2002. Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nature Neuroscience, 5(3): 247–253.
  • Kelly J.B., Judge P.W. 1994. Binaural organization of primary auditory cortex in the ferret (Mustela putorius). Journal of Neurophysiology, 71(3): 904–913.
  • Kiang N.Y.S., Morest D.K., Godfrey D.A., Guinan J.J., Kane E.C. 1973. Stimulus coding at caudal levels of the cat's auditory nervous system: I. Response characteristics of single units. In: , Möller A.R. (ed.) Basic Mechanisms in Hearing. New York: Academic; pp. 455–478.
  • Knudsen E.I., Knudsen P.F., Esterly S.D. 1984. A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl. Journal of Neuroscience, 4(4): 1012–1020.
  • Koundakjian E.J., Appler J.L., Goodrich L.V. 2007. Auditory neurons make stereotyped wiring decisions before maturation of their targets. Journal of Neuroscience, 27(51): 14078–14088.
  • Kral A., Schroder J.H., Klinke R., Engel A.K. 2003. Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Experimental Brain Research, 153(4): 605–613.
  • Kral A., Tillein J., Heid S., Klinke R., Hartmann R. 2006. Cochlear implants: cortical plasticity in congenital deprivation. Progress in Brain Research, 157: 283–313.
  • Kral A., Hartmann R., Tillein J., Heid S., Klinke R. 2000. Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cerebral Cortex, 10(7): 714–726.
  • Kral A., Tillein J., Heid S., Hartmann R., Klinke R. 2005. Postnatal cortical development in congenital auditory deprivation. Cerebral Cortex, 15(5): 552–562.
  • Kral A., Tillein J., Hubka P., Schiemann D., Heid S., Hartmann R., Engel A.K 2009. Spatiotemporal patterns of cortical activity with bilateral cochlear implants in congenital deafness. Journal of Neuroscience, 29(3): 811–827.
  • Kusmierek P., Malinowska M., Kowalska D.M. 2007. Different effects of lesions to auditory core and belt cortex on auditory recognition in dogs. Experimental Brain Research, 180(3): 491–508.
  • Laback B., Pok S.M., Baumgartner W.D., Deutsch W.A., Schmid K. 2004. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors. Ear and Hearing, 25(5): 488–500.
  • Larsen S.A., Kirchhoff T.M. 1992. Anatomical evidence of synaptic plasticity in the cochlear nuclei of white-deaf cats. Experimental Neurology, 115(1): 151–157.
  • Leake P.A., Hradek G.T. 1988. Cochlear pathology of long term neomycin induced deafness in cats. Hearing Research, 33(1): 11–33.
  • Leake P.A., Hradek G.T., Chair L., Snyder R.L. 2006. Neonatal deafness results in degraded topographic specificity of auditory nerve projections to the cochlear nucleus in cats. Journal of Comparative Neurology, 497(1): 13–31.
  • Leake P.A., Snyder R.L., Hradek G.T. 2002. Postnatal refinement of auditory nerve projections to the cochlear nucleus in cats. Journal of Comparative Neurology, 448(1): 6–27.
  • Leao R.N., Sun H., Svahn K., Berntson A., Youssoufian M., Paolini A.G., Fyffe R.E., Walmsley B. 2006. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. Journal of Physiology, 571(Pt 3): 563–578.
  • Litovsky R.Y., Parkinson A., Arcaroli J., Peters R., Lake J., Johnstone P., Yu G. 2004. Bilateral cochlear implants in adults and children. Archieves of Otolaryngology – Head & Neck Surgery, 130(5): 648–655.
  • Litovsky R.Y., Jones G.L., Agrawal S., van Hoesel R. 2010. Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. Journal of Acoustical Society of America, 127(1): 400–414.
  • Lomber S.G., Meredith M.A., Kral A. 2010. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nature Neuroscience, 13(11): 1421–1427.
  • Lustig L.R., Leake P.A., Snyder R.L., Rebscher S.J. 1994. Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hearing Research, 74(1–2): 29–37.
  • Malhotra S., Hall A.J., Lomber S.G. 2004. Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. Journal of Neurophysiology, 92(3): 1625–1643.
  • Moore D.R. 1990. Auditory brainstem of the ferret: bilateral cochlear lesions in infancy do not affect the number of neurons projecting from the cochlear nucleus to the inferior colliculus. Brain Research. Developmental Brain Research, 54(1): 125–130.
  • Mrsic-Flogel T.D., Versnel H., King A.J. 2006. Development of contralateral and ipsilateral frequency representations in ferret primary auditory cortex. European Journal of Neuroscience, 23(3): 780–792.
  • Neff W.D. 1977. The brain and hearing: Auditory discriminations affected by brain lesions. Annals of Otology, Rhinology & Laryngology, 86: 500–506.
  • Nodal F.R., Kacelnik O., Bajo V.M., Bizley J.K., Moore D.R., King A.J. 2010. Lesions of the auditory cortex impair azimuthal sound localization and its recalibration in ferrets. Journal of Neurophysiology, 103(3): 1209–1225.
  • Nopp P., Schleich P., D'Haese P. 2004. Sound localization in bilateral users of MED-EL COMBI 40/40+ cochlear implants. Ear and Hearing, 25(3): 205–214.
  • Phillips D.P., Judge P.W., Kelly J.B. 1988. Primary auditory cortex in the ferret (Mustela putorius): neural response properties and topographic organization. Brain Research, 443(1–2): 281–294.
  • Poon B.B., Eddington D.K., Noel V., Colburn H.S. 2009. Sensitivity to interaural time difference with bilateral cochlear implants: development over time and effect of interaural electrode spacing. Journal of Acoustical Society of America, 126(2): 806–815.
  • Raggio M.W., Schreiner C.E. 1999. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness. Journal of Neurophysiology, 82(6): 3506–3526.
  • Ryugo D.K., Pongstaporn T., Huchton D.M., Niparko J.K. 1997. Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. Journal of Comparative Neurology, 385(2): 230–244.
  • Saada A.A., Niparko J.K., Ryugo D.K. 1996. Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Research, 736(1–2): 315–328.
  • Salloum C.A., Valero J., Wong D.D., Papsin B.C., van Hoesel R., Gordon K.A. 2010. Lateralization of interimplant timing and level differences in children who use bilateral cochlear implants. Ear and Hearing, 31(4): 441–456.
  • Sanes D.H., Takacs C. 1993. Activity-dependent refinement of inhibitory connections. European Journal of Neuroscience, 5(6): 570–574.
  • Schleich P., Nopp P., D'Haese P. 2004. Head shadow, squelch, and summation effects in bilateral users of the MED-EL COMBI 40/40+ cochlear implant. Ear and Hearing, 25(3): 197–204.
  • Schwartz I.R., Higa J.F. 1982. Correlated studies of the ear and brainstem in the deaf white cat: changes in the spiral ganglion and the medial superior olivary nucleus. Acta Otolaryngologica., 93(1–2): 9–18.
  • Sharma A., Dorman M.F., Kral A. 2005. The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hearing Research, 203(1–2): 134–143.
  • Shepherd R.K., Hardie N.A. 2001. Deafness-induced changes in the auditory pathway: implications for cochlear implants. Audiology & Neuro-otology, 6(6): 305–318.
  • Shepherd R.K., Hartmann R., Heid S., Hardie N., Klinke R. 1997. The central auditory system and auditory deprivation: experience with cochlear implants in the congenitally deaf. Acta Oto-laryngologica. Supplementum, 532: 28–33.
  • Smith A.L., Parsons C.H., Lanyon R.G., Bizley J.K., Akerman C.J., Baker G.E., Dempster A.C., Thompson I.D., King A.J. 2004. An investigation of the role of auditory cortex in sound localization using muscimol-releasing Elvax. European Journal of Neuroscience, 19(11): 3059–3072.
  • Snyder R.L., Rebscher S.J., Cao K.L., Leake P.A., Kelly K. 1990. Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hearing Research, 50(1–2): 7–33.
  • Stecker G.C., Harrington I.A., Middlebrooks J.C. 2005. Location coding by opponent neural populations in the auditory cortex. PLoS Biology, 3(3): e78.
  • Svirsky M.A., Teoh S.W., Neuburger H. 2004. Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. Audiology & Neuro-otology, 9(4): 224–233.
  • Tillein J., Hubka P., Syed E., Hartmann R., Engel A.K., Kral A. 2010. Cortical representation of interaural time difference in congenital deafness. Cerebral Cortex, 20(2): 492–506.
  • Ulfendahl M. 1997. Mechanical responses of the mammalian cochlea. Progress in Neurobiology, 53: 331–380.
  • Van Hoesel R.J. 2004. Exploring the benefits of bilateral cochlear implants. Audiology & Neuro-otology, 9(4): 234–246.
  • Van Hoesel R.J., Tyler R.S. 2003. Speech perception, localization, and lateralization with bilateral cochlear implants. Journal of Acoustical Society of America, 113(3): 1617–1630.
  • Vollmer M., Beitel R.E., Snyder R.L., Leake P.A. 2007. Spatial selectivity to intracochlear electrical stimulation in the inferior colliculus is degraded after long-term deafness in cats. Journal of Neurophysiology, 98(5): 2588–2603.
  • Waltzman S.B., Cohen N.L. 1998. Cochlear implantation in children younger than 2 years old. American Journal of Otolaryngology, 19(2): 158–162.
  • Webster D.B., Webster M. 1977. Neonatal sound deprivation affects brain stem auditory nuclei. Archives of Otolaryngology, 103(7): 392–396.
  • West C.D., Harrison J.M. 1973. Transneuronal cell atrophy in the congenitally deaf white cat. Journal of Comparative Neurology, 151: 377–398.
  • Yin T.C., Chan J.C. 1990. Interaural time sensitivity in medial superior olive of cat. Journal of Neurophysiology, 64(2): 465–488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.