Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 11, 2008 - Issue 3
72
Views
1
CrossRef citations to date
0
Altmetric
Research articles

Depletion of intracellular zinc down-regulates expression of Uch-L1 mRNA and protein, and CREB mRNA in cultured hippocampal neurons

, , , , &
Pages 96-102 | Published online: 20 Nov 2013

References

  • Vallee BL, Auld DS. Zinc coordination, function, and structure on zinc enzymes and other proteins. Biochemistry 1990; 29: 5647 ∓5659.
  • Dvergsten CL. Retarded synaptogenesis and differentiation of cerebellar neurons in zinc-deficient rats. In: Frederickson CJ, Howell GA, Kasarskis EJ. (eds) The neurobiology of zinc Part B: deficiency, toxicity and pathology, vol. 11. New York: Alan R. Liss, 1984; 17–31.
  • Frederickson CJ, Suh SW, Silva D, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 2000; 130: S1471–S1483.
  • Colvin RA, Davis N, Nipper W, Carter PA. Zinc transport in the brain: route of zinc influx and efflux in neurons. J Nutr 2000; 130: S1484–S1487.
  • Golub MS, Keen CL, Gershwin ME, Hendrickx AG. Developmental zinc deficiency and behavior. J Nutr 1995; 125: 2263–2271.
  • Halas ES, Eberhardt MJ, Diers MA, Sandstead HH. Learning and memory impairment in adult rats due to severe zinc deficiency during lactation. Physiol Behav 1983; 30: 371–381.
  • Halas ES, Hunt CD, Eberhardt MJ. Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav 1986; 37: 451–458.
  • Massaro TF, Mohs M, Fosmire G. Effects of moderate zinc deficiency on cognitive performance in young adult rats. Physiol Behav 1982; 25: 117–121.
  • Sandstead HH, Fosmire GJ, Halas ES, Jacob RA, Strobel DA, Marks EO. Zinc deficiency: effects on brain and behavior of rats and rhesus monkey. Teratology 1977; 16: 229–234.
  • Hu KH, Friede RL. Topographic determination of zinc in human brain by atomic absorption spectrophotometry. J Neurochem 1968; 15: 677–685.
  • Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl- terminal hydrolase. Science 1989; 246: 670–673.
  • Wilkinson KD, Deshpande S, Larsen CN. Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. Biochem Soc Trans 1992; 20: 631–637.
  • Day INM, Thompson RJ. Molecular cloning of cDNA coding for human PGP9.5 protein. A novel cytoplasmic marker for neurons and neuroendocrine cells. FEBS Lett 1987; 210: 157–160.
  • Huang Y, Baker RT, Fischer-Vize JA. Control of cell fate by a deubiquitinating enzyme encoded by fat facets gene. Science 1995; 270: 1828–1831.
  • Oh CE, McMahon R, Benzer S, Tanouye MA. bendless, a Drosophila gene affecting neuronal connectivity, encodes a ubiquitin-conjugating enzyme homolog. J Neurosci 1994; 14: 3166–3179.
  • Muralidhar MG, Thomas JB. The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes. Neuron 1993; 11: 253–266.
  • King RW, Deshaies RJ, Peters JM, Kirschner MW. How proteolysis drives the cell cycle. Science 1996; 274: 1652–1659.
  • Verma IM, Stevenson JK, Schwartz EM, Van Antwerp D, Miyamoto S. Rel/NF-KB/I-KB family: intimate tales of association and dissociation. Genes Dev 1995; 9: 2723–2735.
  • Rock KL, Gramm C, Rothstein L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides present on MHC class I molecules. Cell 1994; 78: 761–771.
  • Sakurai M, Ayukawa K, Setsuie R, et al. Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation. J Cell Sci 2006; 119: 162–171.
  • Hegde AN, DiAntonio A. Ubiquitin and the synapse. Nat Rev Neurosci 2002; 3: 854–861.
  • Bourtchouladze R, Lidge R, Catapano R, et al. A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci USA 2003; 100: 10518–10522.
  • Gong B, Cao ZX, Zheng P, et al. Ubiquitin hydrolase Uch-L1 rescues ß- amyloid-induced decreases in synaptic function and contextual memory. Cell 2006; 126: 775–788.
  • Lansbury PT. Improving synaptic function in a mouse model of AD. Cell 2006; 126: 655–657.
  • Hegde AN, Inokuchi K, Pei WZ, et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 1997; 89: 115–126.
  • Dash PK, Hochner B, Kandel ER. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 1990; 345: 718–721.
  • Guzowski JF, McGaugh JL. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci USA 1997; 94: 2693–2698.
  • Kida S, Josselyn SA, de Ortiz SP, et al. CREB required for the stability of new and reactivated fear memories. Nat Neurosci 2002; 5: 348–355.
  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 1994; 79: 59–68.
  • Hegde AN, Goldberg AL, Schwartz JH. Regulatory subunits of cAMP-dependent protein kinase are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc Natl Acad Sci USA 1993; 90: 7436–7440.
  • Bergold PJ, Sweatt JD, Winicov I, Weiss KR, Kandel ER, Schwartz JH. Protein synthesis during acquisition of long-term facilitation is needed for the persistent loss of R subunits of the Aplysia cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1990; 87: 3788–3791.
  • Chain DG, Casadio A, Schacher S, et al. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysiai Neuron 1999; 22: 147–156.
  • Manago Y, Kanahori Y, Shimada A. Potentiation of ATP-induced currents due to the activation of P2X receptor by ubiquitin carboxy- terminal hydrolase L1. J Neurochem 2005; 92: 1061–1072.
  • Castegna A, Akesenov M. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med2002; 33: 562–571.
  • Choi J, Levey AI, Weintraub ST. Oxidative modifications and down- regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s disease. J Biol Chem 2004; 279: 13256–13264.
  • Andrasi E, Farkas E, Scheibler H, Reffy A, Bezur L. Al, Zn, Cu, Mn and Fe levels in brain in Alzheimer’s disease. Arch Gerontol Geriatr 1995; 21: 89–97.
  • Corrigan FM, Reynolds GP, Ward NI. Hippocampal tin, aluminum, and zinc in Alzheimer’s disease. Biometals 1993; 6: 149–154.
  • Forsleff L, Schauss AG, Bier ID, Stuart S. Evidence of functional zinc deficiency in Parkinson’s disease. J Altern Complement Med 1999; 5: 57–64.
  • Yin JC. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophilai Cell 1994; 79: 49–58.
  • Sukegawa J, Blobel G. A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 1993; 72: 29–38.
  • Heximer SP, Forsdyke DR. A human putative lymphocyte G0/G1 switch gene homologous to a rodent gene encoding a zinc-binding potential transcription factor. DNA Cell Biol 1993; 12: 73–88.
  • Klug A. Zinc finger peptides for the regulation of gene expression. J Mol Biol 1999; 293: 215–218.
  • Newton AL, Sharpe BK, Kwan A, Mackay JP, Crossley M. The transactivation domain within cysteine/histidine-rich region 1 of CBP comprises two novel zinc-binding modules. J Biol Chem 2000; 275: 15128–15134.
  • Kalkhoven E, Teunissen H, Houweling A, Verrijzer CP, Zantema A. The PHD type zinc finger is an integral part of the CBP acetyltransferase domain. Mol Cell Biol 2002; 22: 1961–1970.
  • Parker D. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol Cell Biol 1996; 16: 694–703.
  • Radhakrishnan I. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 1997; 91: 741–752.
  • Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002; 35: 606–623.
  • Meyer TE, Waerer G, Lin J, Beckmann W Habener JF. The promoter of the gene encoding 3',5'-cyclic adenosine monophosphate (cAMP) response element binding protein contains cAMP response elements: evidence for positive autoregulation of gene transcription. Endocrinology 1993; 132: 770–780.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.